精英家教网 > 高中数学 > 题目详情
8.在等差数列{an}中,a3+a6=a4+5,且a2不大于1,则a8的取值范围是(  )
A.[9,+∞)B.(-∞,9]C.(9,+∞)D.(-∞,9)

分析 由等差数列的性质得a3+a6=a4+a5,从而a5=5,又a2≤1,进而d≥$\frac{4}{3}$,由此能求出a8的取值范围.

解答 解:∵在等差数列{an}中,a3+a6=a4+5,且a2不大于1,
∴a5=5,又a2≤1,
∴5-3d≤1,∴d≥$\frac{4}{3}$,
∴a8=a5+3d≥5+4=9.
∴a8的取值范围是[9,+∞).
故选:A.

点评 本题考查等差数列的第8项的取值范围的求法,是基础题,解题时要认真审题,注意等差数列的性质的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

18.已知半径为$\sqrt{5}$,圆心在直线l1:x-y+1=0上的圆C与直线l2:$\sqrt{3}$x-y+1-$\sqrt{3}$=0相交于M,N两点,且|MN|=$\sqrt{17}$
(1)求圆C的标准方程;
(2)当圆心C的横、纵坐标均为整数时,若对任意m∈R,直线l3:mx-y+$\sqrt{a}$+1=0与圆C恒有公共点,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.在等差数列{an}中,已知a1+a2+a3=9,a2a4=21,数列{bn}满足$\frac{b_1}{a_1}+\frac{b_2}{a_2}+…+\frac{b_n}{a_n}=1-\frac{1}{2^n}({n∈{N^*}}),{S_n}={b_1}+{b_2}+…+{b_n}$,若Sn>2,则n的最小值为(  )
A.5B.4C.3D.2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.在半径为12mm的圆上,弧长为144mm的弧所对的圆心角的弧度数为12.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知集合M={x|lg(x-2)≤0},N={x|-1≤x≤3},则M∪N=(  )
A.{x|x≤3}B.{x|2<x<3}C.{x|-1≤x≤3}D.R

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.如图,在三棱柱ABC-A1B1C1中,CA=CB=AA1,∠BAA1=∠BAC=60°,点O是线段AB的中点.
(Ⅰ)证明:BC1∥平面OA1C;
(Ⅱ)若AB=2,A1C=$\sqrt{6}$,求二面角A-BC-A1的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.在两坐标轴上截距均为m(m∈R)的直线l1与直线l2:2x+2y-3=0的距离为$\sqrt{2}$,则m=(  )
A.$\frac{7}{2}$B.7C.-1或7D.-$\frac{1}{2}$或$\frac{7}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.在△ABC中,a、b、c分别是三内角A、B、C对应的三边,已知b2+c2=a2+bc
(1)求角A的大小;
(2)若2sin2$\frac{B}{2}$=cosC,判断△ABC的形状.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.在平面直角坐标系xOy中,椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的左、右焦点分别为F1、F2,且离心率是$\frac{1}{2}$,过坐标原点O的任一直线交椭圆C于M、N两点,且|NF2|+|MF2|=4.
(Ⅰ)求椭圆C的方程;
(Ⅱ)若直线l:y=kx+m与椭圆C交于不同的两点A、B,且与圆x2+y2=1相切,
(i)求证:m2=k2+1;
(ii)求$\overrightarrow{OA}$•$\overrightarrow{OB}$的最小值.

查看答案和解析>>

同步练习册答案