精英家教网 > 高中数学 > 题目详情
13.如图,在三棱柱ABC-A1B1C1中,CA=CB=AA1,∠BAA1=∠BAC=60°,点O是线段AB的中点.
(Ⅰ)证明:BC1∥平面OA1C;
(Ⅱ)若AB=2,A1C=$\sqrt{6}$,求二面角A-BC-A1的余弦值.

分析 (Ⅰ)连接OC,OA1,A1B,以O为原点,OA、OA1、OC所在直线分别为x,y,z轴,建立空间直角坐标系,利用向量法能证明BC1∥平面OA1C.
(Ⅱ)求出平面BCA1的法向量和平面ABC的法向量,利用向量法能求出二面角A-BC-A1的余弦值.

解答 证明:(Ⅰ)连接OC,OA1,A1B.∵CA=CB,∴OC⊥AB.
∵CA=AB=AA1,∠BAA1=∠BAC=60°,
故△AA1B、△ABC都为等边三角形,
∴OA1⊥AB,CO⊥AB,∴OA、OA1、OC两两垂直,
以O为原点,OA、OA1、OC所在直线分别为x,y,z轴,
建立空间直角坐标系,
设CA=CB=AA1=2,
则B(-1,0,0),C1(-1,$\sqrt{3}$,$\sqrt{3}$),O(0,0,0),
A1(0,$\sqrt{3}$,0),C(0,0,$\sqrt{3}$),
$\overrightarrow{B{C}_{1}}$=(0,$\sqrt{3},\sqrt{3}$),$\overrightarrow{O{A}_{1}}$=(0,$\sqrt{3},0$),$\overrightarrow{OC}$=(0,0,$\sqrt{3}$),
设平面OA1C的法向量$\overrightarrow{n}$=(1,0,0),
∵$\overrightarrow{B{C}_{1}}$$•\overrightarrow{n}$=0,且BC1?平面OA1C,
∴BC1∥平面OA1C.
解:(Ⅱ)∵AB=2,A1C=$\sqrt{6}$,∴B(-1,0,0),C(0,0,$\sqrt{3}$),A1(0,$\sqrt{3},0$),
$\overrightarrow{BC}$=(1,0,$\sqrt{3}$),$\overrightarrow{B{A}_{1}}$=(1,$\sqrt{3},0$),
设平面BCA1的法向量$\overrightarrow{m}$=(x,y,z),
则$\left\{\begin{array}{l}{\overrightarrow{m}•\overrightarrow{BC}=x+\sqrt{3}z=0}\\{\overrightarrow{m}•\overrightarrow{B{A}_{1}}=x+\sqrt{3}y=0}\end{array}\right.$,取x=$\sqrt{3}$,得$\overrightarrow{m}=(\sqrt{3},-1,-1)$,
平面ABC的法向量$\overrightarrow{p}$=(0,0,1),
设二面角A-BC-A1的平面角为θ,
则cosθ=$\frac{|\overrightarrow{n}•\overrightarrow{m}|}{|\overrightarrow{m}|•|\overrightarrow{n}|}$=$\frac{1}{\sqrt{5}}$=$\frac{\sqrt{5}}{5}$.
∴二面角A-BC-A1的余弦值为$\frac{\sqrt{5}}{5}$.

点评 本题考查线面平行的证明,考查二面角的余弦值的求法,是中档题,解题时要认真审题,注意向量法的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

3.已知函数f(x)=$\left\{\begin{array}{l}{2^x},(x<2)\\ f(x-2),\;\;(x≥2)\end{array}$,则f(5)的值为(  )
A.$\frac{3}{2}$B.1C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.在自然界中存在着大量的周期函数,比如声波.若两个声波随时间的变化规律分别为:y1=3$\sqrt{2}$sin(100πt),y2=3sin(100πt-$\frac{π}{4}$),则这两个声波合成后(即y=y1+y2)的声波的振幅为(  )
A.6$\sqrt{2}$B.3+3$\sqrt{2}$C.3$\sqrt{2}$D.3$\sqrt{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.函数f(x)=Asin(ωx+φ),x∈R,(ω>0,-$\frac{π}{2}$<φ<$\frac{π}{2}$)的部分图象如图所示.
(Ⅰ)确定A,ω,φ的值,并写出函数f(x)的解析式;
(Ⅱ)描述函数y=f(x)的图象可由函数y=sinx的图象经过怎样的变换而得到;
(Ⅲ)若f($\frac{α}{2}$)=$\frac{10}{13}$($\frac{π}{3}$<α<$\frac{5π}{6}$),求tan2(α-$\frac{π}{3}$).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.在等差数列{an}中,a3+a6=a4+5,且a2不大于1,则a8的取值范围是(  )
A.[9,+∞)B.(-∞,9]C.(9,+∞)D.(-∞,9)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.如图,在三棱柱ABC-A1B1C1中,AA1⊥底面ABC,CAB=90°,AB=AC=2,AA1=$\sqrt{3}$,M为BC的中点,P为侧棱BB1上的动点.
(1)求证:平面APM⊥平面BB1C1C;
(2)试判断直线BC1与AP是否能够垂直.若能垂直,求PB的长;若不能垂直,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.四面体ABCD中,AB=2,BC=3,CD=4,DB=5,AC=$\sqrt{13}$,AD=$\sqrt{29}$,则四面体ABCD外接球的表面积是29π.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.《九章算术》是我国古代第一部数学专著,全书收集了246个问题及其解法,其中一个问题为“现有一根九节的竹子,自上而下各节的容积成等差数列,上面四节容积之和为3升,下面三节的容积之和为4升,求中间两节的容积各为多少?”该问题中第2节,第3节,第8节竹子的容积之和为(  )
A.$\frac{17}{6}$升B.$\frac{7}{2}$升C.$\frac{113}{66}$升D.$\frac{109}{33}$升

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知函数$f(x)=\frac{lnx}{x},g(x)=x({lnx-\frac{ax}{2}-1})$.
(1)求y=f(x)的最大值;
(2)当$a∈[{0,\frac{1}{e}}]$时,函数y=g(x),(x∈(0,e])有最小值. 记g(x)的最小值为h(a),求函
数h(a)的值域.

查看答案和解析>>

同步练习册答案