精英家教网 > 高中数学 > 题目详情
18.如图,在三棱柱ABC-A1B1C1中,AA1⊥底面ABC,CAB=90°,AB=AC=2,AA1=$\sqrt{3}$,M为BC的中点,P为侧棱BB1上的动点.
(1)求证:平面APM⊥平面BB1C1C;
(2)试判断直线BC1与AP是否能够垂直.若能垂直,求PB的长;若不能垂直,请说明理由.

分析 (1)推导出AM⊥BC,AM⊥BB1,由此能证明平面APM⊥平面BB1C1C.
(2)以A为原点,AC为x轴,AB为y轴,AA1为z轴,建立空间直角坐标系,利用向量法推导出直线BC1与AP不能垂直.

解答 证明:(1)∵在三棱柱ABC-A1B1C1中,AA1⊥底面ABC,CAB=90°,
AB=AC=2,AA1=$\sqrt{3}$,M为BC的中点,P为侧棱BB1上的动点.
∴AM⊥BC,AM⊥BB1
∵BC∩BB1=B,∴AM⊥平面BB1C1C,
∵AM?平面APM,
∴平面APM⊥平面BB1C1C.
解:(2)以A为原点,AC为x轴,AB为y轴,AA1为z轴,建立空间直角坐标系,
B(0,2,0),C1(2,0,$\sqrt{3}$),A(0,0,0),设BP=t,(0$≤t≤\sqrt{3}$),
则P(0,2,t),
$\overrightarrow{B{C}_{1}}$=(2,-2,$\sqrt{3}$),$\overrightarrow{AP}$=(0,2,t),
若直线BC1与AP能垂直,则$\overrightarrow{B{C}_{1}}•\overrightarrow{AP}=0-4+\sqrt{3}t=0$,
解得t=$\frac{4\sqrt{3}}{3}$,
∵t=$\frac{4\sqrt{3}}{3}$>BB1=$\sqrt{3}$,
∴直线BC1与AP不能垂直.

点评 本题考查面面垂直的证明,考查两直线能否垂直的判断,是中档题,解题时要认真审题,注意向量法的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

8.已知全集U=R,集合M={x|x2+2x-3≥0},N={x|log2x≤1},则(∁UM)∪N=(  )
A.{x|-1≤x≤2}B.{x|-1≤x≤3}C.{x|-3<x≤2}D.{x|0<x<1}

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.把216°化为弧度是(  )
A.$\frac{6π}{5}$B.$\frac{5π}{6}$C.$\frac{7π}{6}$D.$\frac{12π}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知幂函数y=f(x)的图象过点($\sqrt{2}$,2$\sqrt{2}$),且f(m-2)>1,则m的取值范围是(  )
A.m<1或m>3B.1<m<3C.m<3D.m>3

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.如图,在三棱柱ABC-A1B1C1中,CA=CB=AA1,∠BAA1=∠BAC=60°,点O是线段AB的中点.
(Ⅰ)证明:BC1∥平面OA1C;
(Ⅱ)若AB=2,A1C=$\sqrt{6}$,求二面角A-BC-A1的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的右顶点为A,左焦点为F,过F作垂直于x轴的直线与双曲线相交于B、C两点,若△ABC为直角三角形,则双曲线的离心率为(  )
A.2B.3C.4D.5

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知函数f(x)=2cosx($\sqrt{3}$sinx+cosx)+m,(x∈R,m∈R).
(1)求f(x)的最小正周期;
(2)若f(x)在区间[0,$\frac{π}{2}$]上的最大值是6,求f(x)在区间[0,$\frac{π}{2}$]上的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.在△ABC中,C=$\frac{2π}{3}$,AB=3,则△ABC的周长为(  )
A.$6sin({A+\frac{π}{3}})+3$B.$6sin({A+\frac{π}{6}})+3$C.$2\sqrt{3}sin({A+\frac{π}{3}})+3$D.$2\sqrt{3}sin({A+\frac{π}{6}})+3$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.如图,网格纸上正方形小格的边长为1,图中粗线画的是某几何体的三视图,则该几何体的表面积为S为(  )(注:圆台侧面积公式为S=π(R+r)l)
A.17π+3$\sqrt{17}$πB.20π+5$\sqrt{17}$πC.22πD.17π+5$\sqrt{17}$π

查看答案和解析>>

同步练习册答案