精英家教网 > 高中数学 > 题目详情

满足,则使得的值最小的是    (   )

A、(4.5,3)          B、(3,6)                       C、(9,2)                       D、(6,4)

B


解析:

把各选项分别代入条件验算,易知B项满足条件,且的值最小,故选B。

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

若x,y满足
3x+y≥12
2x+9y≥36
2x+3y≥24
x≥0,y≥0
,则使得z=3x+2y的值最小的(x,y)是(  )
A、(4.5,3)
B、(3,6)
C、(9,2)
D、(6,4)

查看答案和解析>>

科目:高中数学 来源: 题型:

对于数列{xn},如果存在一个正整数m,使得对任意的n(n∈N*)都有xm+n=xn成立,那么就把这样一类数列{xn}称作周期为m的周期数列,m的最小正值称作数列{xn}的最小正周期,以下简称周期.例如当xn=2时,{xn}是周期为1的周期数列;当yn=sin(
2
)
时,{yn}是周期为4的周期数列.设数列{an}满足an+2=λ•an+1-an(n∈N*),a1=1,a2=20.
(1)若数列{an}是周期为3的周期数列,则常数λ的值是
-1
-1

(2)设数列{an}的前n项和为Sn,若λ=1,则S2012=
21
21

查看答案和解析>>

科目:高中数学 来源: 题型:

(2008•嘉定区一模)设正数数列{an}的前n项和为Sn,且对任意的n∈N*,Sn是an2和an的等差中项.
(1)求数列{an}的通项公式;
(2)在集合M={m|m=2k,k∈Z,且1000≤k<1500}中,是否存在正整数m,使得不等式Sn-1005>
a
2
n
2
对一切满足n>m的正整数n都成立?若存在,则这样的正整数m共有多少个?并求出满足条件的最小正整数m的值;若不存在,请说明理由;
(3)请构造一个与数列{Sn}有关的数列{un},使得
lim
n→∞
(u1+u2+…+un)
存在,并求出这个极限值.

查看答案和解析>>

科目:高中数学 来源: 题型:

满足,则使得的值最小的是    (   )

A、(4.5,3)              B、(3,6)                 C、(9,2)                 D、(6,4)

查看答案和解析>>

同步练习册答案