6£®ÔÚÆ½ÃæÖ±½Ç×ø±êϵxOyÖУ¬Ö±lµÄ²ÎÊý·½³Ì$\left\{\begin{array}{l}{x=2+\frac{1}{2}t}\\{y=\frac{\sqrt{3}}{2}t}\end{array}\right.$£¨tΪ²ÎÊý£©£¬ÒÔ×ø±êÔ­µãΪ¼«µã£¬xÖáÕý°ëÖáΪ¼«ÖὨÁ¢¼«×ø±êϵ£¬ÇúÏßCµÄ¼«×ø±ê·½³ÌΪ£º¦Ñ=4cos¦È£®
£¨1£©Ö±ÏßlµÄ²ÎÊý·½³Ì»¯Îª¼«×ø±ê·½³Ì£»
£¨2£©ÇóÖ±ÏßlµÄÇúÏßC½»µãµÄ¼«×ø±ê£¨¦Ñ¡Ý0£¬0¡Ü¦È£¼2¦Ð£©

·ÖÎö £¨1£©½«Ö±ÏßÖ±lµÄ²ÎÊý·½³Ì$\left\{\begin{array}{l}{x=2+\frac{1}{2}t}\\{y=\frac{\sqrt{3}}{2}t}\end{array}\right.$£¨tΪ²ÎÊý£©£¬ÏûÈ¥²ÎÊýt£¬¼´¿É»¯ÎªÆÕͨ·½³Ì£¬½«$\left\{\begin{array}{l}{x=¦Ñcos¦È}\\{y=¦Ñsin¦È}\end{array}\right.$´úÈë$\sqrt{3}x-y-2\sqrt{3}$=0¿ÉµÃ¼«×ø±ê·½³Ì£®
£¨2£©CÇúÏßCµÄ¼«×ø±ê·½³ÌΪ£º¦Ñ=4cos¦È£¬¼´¦Ñ2=4¦Ñcos¦È£¬ÀûÓÃ$\left\{\begin{array}{l}{x=¦Ñcos¦È}\\{y=¦Ñsin¦È}\end{array}\right.$»¯ÎªÆÕͨ·½³Ì£¬ÓëÖ±Ïß·½³ÌÁªÁ¢¿ÉµÃ½»µã×ø±ê£¬ÔÙ»¯Îª¼«×ø±ê¼´¿É£®

½â´ð ½â£º£¨1£©½«Ö±ÏßÖ±lµÄ²ÎÊý·½³Ì$\left\{\begin{array}{l}{x=2+\frac{1}{2}t}\\{y=\frac{\sqrt{3}}{2}t}\end{array}\right.$£¨tΪ²ÎÊý£©£¬ÏûÈ¥²ÎÊýt£¬»¯ÎªÆÕͨ·½³Ì$\sqrt{3}x-y-2\sqrt{3}$=0£¬
½«$\left\{\begin{array}{l}{x=¦Ñcos¦È}\\{y=¦Ñsin¦È}\end{array}\right.$´úÈë$\sqrt{3}x-y-2\sqrt{3}$=0µÃ$\sqrt{3}¦Ñcos¦È-¦Ñsin¦È-2\sqrt{3}$=0£®
£¨2£©CÇúÏßCµÄ¼«×ø±ê·½³ÌΪ£º¦Ñ=4cos¦È£¬¼´¦Ñ2=4¦Ñcos¦È£¬
»¯ÎªÆÕͨ·½³ÌΪx2+y2-4x=0£®
ÁªÁ¢$\left\{\begin{array}{l}{\sqrt{3}x-y-2\sqrt{3}=0}\\{{x}^{2}+{y}^{2}-4x=0}\end{array}\right.$½âµÃ£º$\left\{\begin{array}{l}{x=1}\\{y=-\sqrt{3}}\end{array}\right.$»ò$\left\{\begin{array}{l}{x=3}\\{y=\sqrt{3}}\end{array}\right.$£¬
¡àlÓëC½»µãµÄ¼«×ø±ê·Ö±ðΪ£º$£¨2£¬\frac{5¦Ð}{3}£©$£¬$£¨2\sqrt{3}£¬\frac{¦Ð}{6}£©$£®

µãÆÀ ±¾Ì⿼²éÁ˲ÎÊý·½³Ì»¯ÎªÆÕͨ·½³Ì¡¢¼«×ø±ê·½³Ì»¯ÎªÖ±½Ç×ø±ê·½³Ì¡¢Ö±ÏßÓëÔ²µÄ½»µã£¬¿¼²éÁËÍÆÀíÄÜÁ¦Óë¼ÆËãÄÜÁ¦£¬ÊôÓÚÖеµÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

16£®ÈôË«ÇúÏß$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1£¨a£¾0£¬b£¾0£©µÄ½¥½üÏßÓëÔ²£¨x-2£©2+y2=2ÏàÇУ¬Ôò´ËË«ÇúÏßµÄÀëÐÄÂʵÈÓÚ£¨¡¡¡¡£©
A£®$\frac{{\sqrt{2}}}{2}$B£®$\sqrt{2}$C£®$\sqrt{3}$D£®2

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

17£®Èçͼ£º$\widehat{BCD}$ÊÇÖ±¾¶Îª2$\sqrt{2}$µÄ°ëÔ²£¬OΪԲÐÄ£¬CÊÇ$\widehat{BD}$ÉÏÒ»µã£¬ÇÒ$\widehat{BC}=2\widehat{CD}$£®DF¡ÍCD£¬ÇÒDF=2£¬BF=2$\sqrt{3}$£¬EΪFDµÄÖе㣬QΪBEµÄÖе㣬RΪFCÉÏÒ»µã£¬ÇÒFR=3RC£®
£¨¢ñ£©ÇóÖ¤£ºQR¡ÎÆ½ÃæBCD£»
£¨¢ò£©ÇóÆ½ÃæBCFÓëÆ½ÃæBDFËù³É¶þÃæ½ÇµÄÓàÏÒÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

14£®Êé¼ÜÉÏÓÐÓïÎÄ¡¢Êýѧ¡¢Ó¢ÓïÊéÈô¸É±¾£¬ËüÃǵÄÊýÁ¿±ÈÒÀ´ÎÊÇ2£º4£º5£¬ÏÖÓ÷ֲã³éÑùµÄ·½·¨´ÓÊé¼ÜÉϳéȡһ¸öÑù±¾£¬Èô³é³öµÄÓïÎÄÊéΪ10±¾£¬ÔòÓ¦³é³öµÄÓ¢ÓïÊé25±¾£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

1£®µÈ±ÈÊýÁÐ{an}µÄǰnÏîºÍΪSn£¬ÒÑÖªS3=a2+5a1£¬a7=2£¬Ôòa5=£¨¡¡¡¡£©
A£®$\frac{1}{2}$B£®-$\frac{1}{2}$C£®2D£®-2

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

11£®ÔÚÆ½ÃæÖ±½Ç×ø±êϵÖУ¬½Ç¦ÁµÄ¶¥µãÓëÔ­µãÖØºÏ£¬Ê¼±ßÓëxÖáµÄ·Ç¸º°ëÖáÖØºÏ£¬Öձ߹ýµãP£¨-$\sqrt{3}$£¬-1£©£¬Ôòsin£¨2¦Á-$\frac{¦Ð}{2}$£©=£¨¡¡¡¡£©
A£®$\frac{\sqrt{3}}{2}$B£®-$\frac{\sqrt{3}}{2}$C£®$\frac{1}{2}$D£®-$\frac{1}{2}$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

18£®ÈôÊýÁÐ{an}µÄǰnÏîÖ®ºÍΪSn=3+2n£¬Ôòa12+a22+a32+¡­+an2=$\frac{{4}^{n}+71}{3}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

15£®ÒÑÖªsin¦Á=$\frac{\sqrt{2}}{3}$£¬¦Á¡Ê£¨0£¬$\frac{¦Ð}{2}$£©£¬Ôòcos£¨¦Ð-¦Á£©=$-\frac{\sqrt{7}}{3}$£¬cos2¦Á=$\frac{5}{9}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

16£®Èôsinx=$\frac{1}{3}$£¬$x¡Ê[{\frac{¦Ð}{2}£¬\frac{3¦Ð}{2}}]$£¬Ôòx=$¦Ð-arcsin\frac{1}{3}$£®£¨½á¹ûÓ÷´Èý½Çº¯Êý±íʾ£©

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸