精英家教网 > 高中数学 > 题目详情
(2012•德州一模)如图,矩形ADEF与梯形ABCD所在的平面互相垂直,AD⊥CD,AB∥CD,AB=AD=1,CD=2,DE=4,M为CE的中点.
(Ⅰ)求证:BM∥平面ADEF:
(Ⅱ)求证:BC⊥平面BDE;
(Ⅲ)求三棱锥C-MBD的体积.
分析:(I)取DE中点N,连接MN,AN,由三角形中位线定理,结合已知中AB∥CD,AB=AD=1,CD=2,易得四边形ABMN为平行四边形,所以BM∥AN,再由线面平面的判定定理,可得BM∥平面ADEF;
(II)由已知中矩形ADEF与梯形ABCD所在的平面互相垂直,易得ED⊥平面ABCD,进而ED⊥BC,由勾股定理,我们易判断出△BCD中,BC⊥BD,由线面垂直的判定定理可得BC⊥平面BDE;
(Ⅲ)取CD中点G,连接MG,利用VC-MBD=VM-BCD,即可求得结论.
解答:(I)证明:取DE中点N,连接MN,AN
在△EDC中,M、N分别为EC,ED的中点,所以MN∥CD,且MN=
1
2
CD.
由已知AB∥CD,AB=
1
2
CD,所以MN∥AB,且MN=AB.
所以四边形ABMN为平行四边形,所以BM∥AN
又因为AN?平面ADEF,且BM?平面ADEF,
所以BM∥平面ADEF;

(II)证明:在矩形ADEF中,ED⊥AD,
又因为平面ADEF⊥平面ABCD,且平面ADEF∩平面ABCD=AD,
所以ED⊥平面ABCD,所以ED⊥BC.
在直角梯形ABCD中,AB=AD=1,CD=2,可得BC=
2

在△BCD中,BD=BC=
2
,CD=2,
因为BD2+BC2=CD2,所以BC⊥BD.
因为BD∩DE=D,所以BC⊥平面BDE,
(Ⅲ)解:取CD中点G,连接MG,则MG∥DE且MG=
1
2
DE=2

∵ED⊥平面ABCD
∴MG⊥平面ABCD
∵BC⊥DB且BC=BD=
2

∴VC-MBD=VM-BCD=
1
3
S△BCD×MG
=
1
3
×
1
2
×
2
×
2
×2=
2
3
点评:本题考查的知识点是直线与平面平行的判定,直线与平面垂直的判定,三棱锥体积的计算,熟练掌握空间直线与平面不同位置关系(平行和垂直)的判定定理、性质定理、定义及几何特征是解答本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2012•德州一模)定义运算
.
ab
cd
.
=ad-bc
,函数f(x)=
.
x-12
-xx+3
.
图象的顶点是(m,n),且k、m、n、r成等差数列,则k+r=
-9
-9

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•德州一模)若a=log20.9,b=3-
1
3
,c=(
1
3
)
1
2
则(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•德州一模)已知
x+y-5≤0
y≥x
x≥1
,则z=2x+3y的最大值为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•德州一模)对于直线m,n和平面α,β,γ,有如下四个命题:
(1)若m∥α,m⊥n,则n⊥α
(2)若m⊥α,m⊥n,则n∥α
(3)若α⊥β,γ⊥β,则α∥γ
(4)若m⊥α,m∥n,n?β,则α⊥β
其中真命题的个数是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•德州一模)已知函数f(x)=
3
sinxcosx-cos2x+
1
2
(x∈R)

(I)求函数f(x)的最小正周期及在区间[0,
π
2
]
上的值域;
(Ⅱ)在△ABC中,角A、B、C所对的边分别是a、b、c,又f(
A
2
+
π
3
)=
4
5
,b=2,△ABC
的面积等于3,求边长a的值.

查看答案和解析>>

同步练习册答案