精英家教网 > 高中数学 > 题目详情
在椭圆
x2
45
+
y2
20
=1
上有一点P,F1,F2是椭圆的左,右焦点,△F1PF2为直角三角形,则这样的点P有(  )
分析:利用椭圆的性质、圆的性质即可得出.
解答:解:①当PF1⊥x轴时,有两个点P满足条件;同理,当PF2⊥x轴时,有两个点P满足条件;
②∵b=
20
=2
5
c=
a2-b2
=5

∴c>b.
∴以原点O为圆心、5为半径的圆与椭圆相交于四个点,这四个点都满足条件.
综上可知:能使△F1PF2为直角三角形的点P共有8个.
故选D.
点评:熟练掌握椭圆的性质、圆的性质是解题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

下列五个命题,其中真命题的序号是
 
(写出所有真命题的序号).
(1)已知C:
x2
2-m
+
y2
m2-4
=1
(m∈R),当m<-2时C表示椭圆.
(2)在椭圆
x2
45
+
y2
20
=1上有一点P,F1、F2是椭圆的左,右焦点,△F1PF2为直角三角形则这样的点P有8个.
(3)曲线
x2
10-m
+
y2
6-m
=1(m<6)
与曲线
x2
5-m
+
y2
9-m
=1(5<m<9)
的焦距相同.
(4)渐近线方程为y=±
b
a
x(a>0,b>0)
的双曲线的标准方程一定是
x2
a2
-
y2
b2
=1

(5)抛物线y=ax2的焦点坐标为(0,
1
4a
)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知点P在椭圆
x2
45
+
y2
20
=1上,F1,F2是椭圆的焦点,若∠F1PF2为钝角,则P点的横坐标的取值范围是
(-3,3)
(-3,3)

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

下列五个命题,其中真命题的序号是______(写出所有真命题的序号).
(1)已知C:
x2
2-m
+
y2
m2-4
=1
(m∈R),当m<-2时C表示椭圆.
(2)在椭圆
x2
45
+
y2
20
=1上有一点P,F1、F2是椭圆的左,右焦点,△F1PF2为直角三角形则这样的点P有8个.
(3)曲线
x2
10-m
+
y2
6-m
=1(m<6)
与曲线
x2
5-m
+
y2
9-m
=1(5<m<9)
的焦距相同.
(4)渐近线方程为y=±
b
a
x(a>0,b>0)
的双曲线的标准方程一定是
x2
a2
-
y2
b2
=1

(5)抛物线y=ax2的焦点坐标为(0,
1
4a
)

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

在椭圆
x2
45
+
y2
20
=1
上有一点P,F1,F2是椭圆的左,右焦点,△F1PF2为直角三角形,则这样的点P有(  )
A.2个B.4个C.6个D.8个

查看答案和解析>>

同步练习册答案