精英家教网 > 高中数学 > 题目详情
17.代数式sin120°cos240°的值为(  )
A.$-\frac{3}{4}$B.$-\frac{{\sqrt{3}}}{4}$C.$-\frac{3}{2}$D.$-\frac{1}{4}$

分析 利用诱导公式及特殊角的三角函数值即可求值.

解答 解:sin120°cos240°
=sin(180°-60°)cos(180°+60°)
=-sin60°cos60°
=-$\frac{\sqrt{3}}{2}×\frac{1}{2}$
=-$\frac{\sqrt{3}}{4}$.
故选:B.

点评 本题主要考查了诱导公式及特殊角的三角函数值的应用,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

13.若x∈[1,+∞)时,函数f(x)=$\frac{{x}^{2}+2x+a}{x}$>0恒成立,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知f(x)是定义在R上的函数,满足f(x+1)=$\frac{1-f(x)}{1+f(x)}$.
(1)求证:f(x)是周期函数,并求周期;
(2)当x∈[0,1]时,f(x)=x,求f(x)在x∈[-1,0]的解析式;
(3)当x∈[2k-1,2k+1](k∈Z)时,对于(2)中的函数,求f(x)的解析式.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.若方程x2-x+m=0有两个不等正根,则实数m的取值范围是(0,$\frac{1}{4}$).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.设向量$\vec a=(1,\;x)$,$\vec b=(x,4)$,则$x=\int_0^{\sqrt{2}}{2tdt}$是$\vec a$∥$\vec b$的(  )条件.
A.充分不必要B.必要不充分
C.充要D.即不充分也不必要

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.如图是$y=Asin(ωx+φ)(A>0,ω>0,0<φ<\frac{π}{2})$的图象,则其解析式为$y=2sin(x+\frac{π}{6})$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知函数f(x)=x2+(4-2a)x+a2+1.
(1)若f(x+2)是偶函数,求a的值;
(2)设P=$\frac{1}{2}$[f(x1)+f(x2)],Q=f($\frac{{x}_{1}+{x}_{2}}{2}$),且x1≠x2,试比较P与Q的大小;
(3)是否存在实数a∈[0,8],使得函数f(x)在[0,4]上的最小值为7,若存在求出a的值,若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.已知tanx=2,则$\frac{sin2x+2cos2x}{{2{{cos}^2}x-3sin2x-1}}$的值为$\frac{2}{15}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.设f(x)=lg$\frac{1+{2}^{x}+{3}^{x}+…+9{9}^{x}+a•10{0}^{x}}{100}$,其中a是实数,如果f(x)当x∈(-∞,1]时有意义,求a的取值范围.

查看答案和解析>>

同步练习册答案