精英家教网 > 高中数学 > 题目详情
已知集合A={x|x2+2x+t<0},B={x|
3x-1
≥1}
,全集U=R.
(Ⅰ)若t=-8,求A∪(CUB);
(Ⅱ)若A∩B≠∅,求实数t的取值范围.
分析:(I)首先求出集合A和B,然后求出CUB,即可得出答案;
(II)先根据A∩B≠∅得出A≠∅,进而求出t<1,然后解不等式求出集合A就可以得出结果.
解答:解:(Ⅰ)当t=-8时,A={x|x2+2x-8<0}=(-4,2),…(2分)
B={x|
3
x-1
≥1}=(1,4]
,(CUB)=(-∞,1]∪(4,+∞)…(4分)
故A∪(CUB)=(-∞,2)∪(4,+∞)…(6分)
(Ⅱ)若A∩B≠∅,则A≠∅,此时△=4-4t>0⇒t<1…(7分)
解不等式x2+2x+t<0得-1-
1-t
<x<-1+
1-t
,即A=(-1-
1-t
,-1+
1-t
)

若A∩B≠∅,则需满足-1+
1-t
>1⇒t<-3

综上,实数t的取值范围是t<-3.…(12分)
点评:此题中的一元二次不等式的解法及集合间的交、并、补运算是高考中的常考内容,要引起注意.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

3、已知集合A={x|x>1},集合B={x|x-4≤0},则A∪B等于(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知集合A={x|x<1},B={x|x(x-2)≤0},则A∩B=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知集合A={x|x<-2或3<x≤4},B={x||x-1|≤4}
求:
(1)CRA;
(2)A∪B;
(3)若C={x|x>a},且B∩C=B,求a的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知集合A={x|x≥1},B={x|x>2},则(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•德阳三模)已知集合A={x|
x-2
x+1
≤0},B={y|y=cosx,x∈R}
.则A∩B为(  )

查看答案和解析>>

同步练习册答案