精英家教网 > 高中数学 > 题目详情
已知数列{an}中a1=1,a2=
1
1+2
a3=
1
1+2+3
a4=
1
1+2+3+4
,…则数列{an}的前n项的和Sn=(  )
分析:可得an=
1
1+2+3+…+n
=2(
1
n
-
1
n+1
),裂项相消可求和.
解答:解:由题意可得an=
1
1+2+3+…+n
=
1
n(n+1)
2
=
2
n(n+1)
=2(
1
n
-
1
n+1
),
故Sn=2(1-
1
2
+
1
2
-
1
3
+
1
3
-
1
4
+…+
1
n
-
1
n+1

=2(1-
1
n+1
)=
2n
n+1

故选C
点评:本题考查数列的求和,涉及等差数列的求和公式和裂项相消法求和,属中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知数列{an}中,a1=-10,且经过点A(an,an+1),B(2n,2n+2)两点的直线斜率为2,n∈N*
(1)求证数列{
an2n
}
是等差数列,并求数列{an}的通项公式;
(2)求数列{an}的最小项.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}中,an=3n+4,若an=13,则n等于(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}中,a1为由曲线y=
x
,直线y=x-2及y轴
所围成图形的面积的
3
32
Sn为该数列的前n项和,且Sn+1=an(1-an+1)+Sn
(1)求数列{an}的通项公式;
(2)若不等式an+an+1+an+2+…+a3n
a
24
对一切正整数n都成立,求正整数a的最大值,并证明结论.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}中,an=n2+(λ+1)n,(x∈N*),且an+1>an对任意x∈N*恒成立,则实数λ的取值范围是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}中an=n2-kn(n∈N*),且{an}单调递增,则k的取值范围是(  )

查看答案和解析>>

同步练习册答案