精英家教网 > 高中数学 > 题目详情

叙述并证明正弦定理.

见解析.

解析试题分析:
试题解析:正弦定理:在一个三角形中,各边和它所对角的正弦的比相等.即(2R三角形外接圆的直径).
证明:在△ABC中,设BC=a,AC=b,AB=c.作CH⊥AB垂足为点H,CH=a•sinB,CH=b•sinA,∴a•sinB=b•sinA,得到;同理,在△ABC中,;即.因为同弧所对的圆周角相等,所以,故得证.

考点:正弦定理.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知a,b,c分别为△ABC的三个内角A,B,C的对边,=(sinA,1),=(cosA,),且
(1)求角A的大小;
(2)若a=2,b=2,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

中,内角所对的边长分别为.
求sinC和b的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

是锐角三角形,分别是内角A,B,C所对边长,并且
(Ⅰ)求角A的值; (Ⅱ)若,求(其中).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知角A,B,C是△ABC三边a,b,c所对的角,,且.
(I)若△ABC的面积S=,求b+c的值;
(II)求b+c的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

中角的对边分别为,且
(1)求角的大小;
(2)若,求面积的最大值。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

中,角所对的边分别为,已知
(Ⅰ)求的大小;
(Ⅱ)若,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

△ABC的内角A,B,C的对边分别为a,b,c,△ABC的面积.
(Ⅰ)求C;
(Ⅱ)若a+b=2,且c=,求A.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,旅客从某旅游区的景点处下山至处有两种路径.一种是从沿直线步行到,另一种从沿索道乘缆车到,然后从沿直线步行到.现有甲、乙两位游客从处下山,甲沿匀速步行,速度为 m/min,在甲出发2 min后,乙从乘缆车到,在处停留1 min后,再从匀速步行到. 假设缆车匀速直线运动的速度为130 m/min,山路长1260 m ,经测量,.

(1)求索道的长;
(2)问乙出发后多少分钟后,乙在缆车上与甲的距离最短?
(3)为使两位游客在处互相等待的时间不超过3分钟,乙步行的速度应控制在什么范围内?

查看答案和解析>>

同步练习册答案