精英家教网 > 高中数学 > 题目详情

△ABC的内角A,B,C的对边分别为a,b,c,△ABC的面积.
(Ⅰ)求C;
(Ⅱ)若a+b=2,且c=,求A.

(Ⅰ)(Ⅱ).

解析试题分析:(Ⅰ)首先利用余弦定理和面积公式将进行化简求解;(Ⅱ)利用正弦定理将边转化角,然后利用两角差的正弦公式展开进行合并求解.
试题解析:(Ⅰ)由余弦定理知c2-a2-b2=-2abcosC,
又△ABC的面积S=absinC= (c2-a2-b2),
所以absinC= (-2abcosC),得tanC=-
因为0<C<π所以C=.                                     6
(Ⅱ)由正弦定理可知=2,
所以有a+b=2sinA+2sinB=2,sinA+sin(-A)=1
展开整理得,sin(+A)=1+A<所以A=.          12分
考点:1.正弦定理和余弦定理;2.三角化简.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知函数f(x)=cos 2x+2sin x·sin.
(1)求f(x)的最小正周期,最大值以及取得最大值时x的集合;
(2)若A是锐角三角形△ABC的内角,f(A)=0,b=5,a=7,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

叙述并证明正弦定理.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

中,角的对边分别为,且满足
(1)求证:
(2)若的面积,,的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知,函数.
(1)求的最值和单调递减区间;
(2)已知在△ABC中,角A、B、C的对边分别为,求△ABC的面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

在△ABC中,角A,B,C的对边分别为a,b,c.已知2cos(B-C)+1=4cosBcosC.
(Ⅰ)求A;
(Ⅱ)若a=2,△ABC的面积为2,求b+c.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知
(Ⅰ)写出的最小正周期
(Ⅱ)若的图象关于直线对称,并且,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设△ABC的内角所对的边分别为,已知
(Ⅰ)求△ABC的周长;
(Ⅱ)求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

中,已知.
(Ⅰ)求的值;
(Ⅱ)若的中点,求的长.

查看答案和解析>>

同步练习册答案