精英家教网 > 高中数学 > 题目详情
在△ABC中,“
AB
BC
>0
”是“△ABC为钝角三角形”的(  )
A、充分不必要条件
B、必要不充分条件
C、充要条件
D、既不充分又不必要条件
分析:利用平面向量的数量积运算法则化简已知的不等式,得到两向量的夹角为锐角,从而得到三角形的内角为钝角,即可得到三角形为钝角三角形;反过来,三角形ABC若为钝角三角形,可得B不一定为钝角,故原不等式不一定成立,可得前者是后者的充分不必要条件.
解答:解:∵
AB
BC
>0
,即|
AB
|•|
BC
|cosθ>0,
∴cosθ>0,且θ∈(0,π),
所以两个向量的夹角θ为锐角,
又两个向量的夹角θ为三角形的内角B的补角,
所以B为钝角,所以△ABC为钝角三角形,
反过来,△ABC为钝角三角形,不一定B为钝角,
则“
AB
BC
>0
”是“△ABC为钝角三角形”的充分条件不必要条件.
故选A
点评:此题考查了三角形形状的判断,涉及的知识有平面向量的数量积运算,以及充分必要条件的证明,熟练掌握平面向量的数量积运算法则是解本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在△ABC中,AB=AC,D、E分别是AB、AC的中点,则(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,AB=4,AC=2,S△ABC=2
3

(1)求△ABC外接圆的面积.
( 2)求cos(2B+
π
3
)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,AB=a,AC=b,当
a
b
<0
时,△ABC为
钝角三角形
钝角三角形

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,AB=2,BC=3,AC=
7
,则△ABC的面积为
3
3
2
3
3
2
,△ABC的外接圆的面积为
3
3

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,
AB
=
a
AC
=
b
,M为AB的中点,
BN
=
1
3
BC
,则
 

查看答案和解析>>

同步练习册答案