精英家教网 > 高中数学 > 题目详情

方程x2+ax-2=0在区间[1,5]上有解,则a的取值范围是________.


分析:由题意知方程在区间上有且只有一个根,由函数零点的存在定理,方程有且仅有一个根,得到函数式对应的函数值的符合相反,即乘积小于0,则实数a的取值范围可得.
解答:由于方程x2+ax-2=0有解,设它的两个解分别为 x1,x2,则x1•x2=-2<0,
故方程x2+ax-2=0在区间[1,5]上有唯一解.
设f(x)=x2+ax-2,则有f(1)f(5)<0,即 (a-1)(5a+23)≤0,
解得 ≤a≤1,
故答案为:
点评:本题考查一元二次方程根的分布于系数的关系,如果方程在某区间上有且只有一个根,可根据函数的零点存在定理进行解答,本题解题的关键是对于所给的条件的转化,本题是一个中档题目
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知m∈R,设P:x1和x2是方程x2-ax-2=0的两个根,不等式|m-5|≤|x1-x2|对任意实数a∈[1,2]恒成立;Q:函数f(x)=3x2+2mx+m+
43
有两个不同的零点.求使“P且Q”为真命题的实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

设a 是甲抛掷一枚骰子得到的点数.则方程x2+ax+2=0 有两个不等实根的概率为
2
3
2
3

查看答案和解析>>

科目:高中数学 来源: 题型:

设命题p:f(x)=
2x-m
在区间(1,+∞)上是减函数;命题q;x1x2是方程x2-ax-2=0的两个实根,不等式m2+5m-3≥|x1-x2|对任意实数α∈[-1,1]恒成立;若¬p∧q为真,试求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2008•成都二模)设关于x的方程x2+ax-2=0的两根为x1、x2,当x1<1<x2时,实数a的取值范围是
(-∞,1)
(-∞,1)

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•宿州一模)已知m为实常数,设命题p:函数f(x)=ln(
1+x2
+x)-mx
在其定义域内为减函数;命题q:x1和x2是方程x2-ax-2=0的两个实根,不等式|m2-5m-3|≥|x1-x2|对任意实数a∈[-1,1]恒成立.
(1)当p是真命题,求m的取值范围;
(2)当“p或q”为真命题,“p且q”为假命题时,求m的取值范围.

查看答案和解析>>

同步练习册答案