精英家教网 > 高中数学 > 题目详情

【题目】在平面直角坐标系xoy中,已知直线l:x+y+a=0与点A(0,2),若直线l上存在点M满足|MA|2+|MO|2=10(O为坐标原点),则实数a的取值范围是(
A.(﹣ ﹣1, ﹣1)
B.[﹣ ﹣1, ﹣1]
C.(﹣2 ﹣1,2 ﹣1)
D.[﹣2 ﹣1,2 ﹣1]

【答案】D
【解析】解:设M(x,﹣x﹣a),
∵直线l:x+y+a=0,点A(0,2),直线l上存在点M,满足|MA|2+|MO|2=10,
∴x2+(x+a)2+x2+(﹣x﹣a﹣2)2=10,
整理,得4x2+2(2a+2)x+a2+(a+2)2﹣10=0①,
∵直线l上存在点M,满足|MA|2+|MO|2=10,
∴方程①有解,
∴△=4(2a+2)2﹣16[a2+(a+2)2﹣10]≥0,
解得:﹣2 ﹣1≤a≤2 ﹣1,
故选:D.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数及函数(a,b,c∈R),若a>b>ca+b+c=0.

(1)证明:f(x)的图像与g(x)的图像一定有两个交点;

(2)请用反证法证明:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】假设关于某设备的使用年限(年)和所支出的维修费用(万元)有如下统计资料:

/

2

3

4

5

6

/万元

若由资料知 呈线性相关关系,试求:

1)回归直线方程;

2)估计使用年限为10年时,维修费用约是多少?

参考公式:回归直线方程: .其中

(注: )

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数f(x)=ax+bx-cx,其中c>a>0,c>b>0.若a,b,c是△ABC的三条边长,则下列结论正确的是______(写出所有正确结论的序号)

①对任意的x∈(-∞,1),都有f(x)>0;

②存在x∈R,使ax,bx,cx不能构成一个三角形的三条边长;

③若△ABC是顶角为120°的等腰三角形,则存在x∈(1,2),使f(x)=0.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列四个命题中真命题的个数是(
①“x=1”是“x2﹣3x+2=0”的充分不必要条件
②命题“x∈R,sinx≤1”的否定是“x∈R,sinx>1”
③“若am2<bm2 , 则a<b”的逆命题为真命题
④命题p;x∈[1,+∞),lgx≥0,命题q:x∈R,x2+x+1<0,则p∨q为真命题.
A.0
B.1
C.2
D.3

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(m+x)(1+x)3的展开式中x的奇数次幂项的系数之和为16,则 xmdx=

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】四棱柱的底面ABCD为矩形,AB=1,AD=2,,则的长为( )

A. B.  C.    D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)若,求曲线处的切线方程;

(2)若上单调递增,求实数的取值范围;

(3)当时,求证:对于任意的 ,均有.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数为奇函数, 为常数.

(1)确定的值;

(2)求证: 上的增函数;

(3)若对于区间上的每一个值,不等式恒成立,求实数的取值范围.

查看答案和解析>>

同步练习册答案