精英家教网 > 高中数学 > 题目详情
11.抛物线y2=4x的焦点到双曲线$\frac{{x}^{2}}{{3}^{\;}}$-y2=1的渐近线的距离是(  )
A.$\frac{1}{2}$B.$\frac{\sqrt{2}}{2}$C.1D.$\sqrt{3}$

分析 求出抛物线的焦点坐标,双曲线的渐近线方程,利用距离公式求解即可.

解答 解:抛物线y2=4x的焦点(1,0)到双曲线$\frac{{x}^{2}}{{3}^{\;}}$-y2=1的渐近线x+$\sqrt{3}$y=0的距离是:$\frac{1}{\sqrt{1+3}}$=$\frac{1}{2}$.
故选:A.

点评 本题考查双曲线的简单性质的应用,点到直线的距离公式的应用,考查计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

8.如图,在梯形ABCD中,AB∥CD,AD=DC=CB=a,∠ABC=60°,平面ACFE⊥平面ABCD,四边形ACFE是矩形.
(1)求证:BC⊥平面ACFE;
(2)若AD=AE,求平面BDF与平面ACFE所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.如图,正六边形ABCDEF中,点Q为CD边中点,则下列数量积最大的是(  )
A.$\overrightarrow{AB}•\overrightarrow{AQ}$B.$\overrightarrow{AC}•\overrightarrow{AQ}$C.$\overrightarrow{AD}•\overrightarrow{AQ}$D.$\overrightarrow{AE}•\overrightarrow{AQ}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知O为平面直角坐标系的原点,F2为双曲线$\frac{{x}^{2}}{{a}^{2}}$$-\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的右焦点,过双曲线左顶点A,做两渐近线的平行线分别与y轴交于C、D两点,B为双曲线的右顶点,若以O为圆心,|OF2|为直径的圆是四边形ACBD的内切圆,则装曲线的离心率为,(  )
A.2B.$\sqrt{2}$C.$\sqrt{3}$D.$\frac{2\sqrt{3}}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知△OAB的直观图△O′A′B′(如图)O′A′=1,∠B′=30°,则△OAB的面积为(  )
A.$\sqrt{6}$B.$\frac{\sqrt{3}}{2}$C.$\frac{\sqrt{6}}{2}$D.$\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.设a=($\frac{9}{7}$)${\;}^{-\frac{1}{4}}$,b=($\frac{9}{7}$)${\;}^{\frac{1}{3}}$,c=log3$\frac{7}{9}$,则a,b,c的大小关系是(  )
A.b<a<cB.c<b<aC.c<a<bD.b<c<a

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.2016年3月31日贵州省第十二届人民代表大会常务委员会第二十一次会议通过的《贵州省人口与计划生育条例》全面开放二孩政策.为了了解人们对于贵州省新颁布的“生育二孩放开”政策的热度,现在某市进行调查,对[5,65]岁的人群随机抽取了n人,得到如下统计表和各年龄段抽取人数频率分布直方图:
 分组 支持“生育二孩”人数 占本组的频率
[5,15) 4 0.8
[15,25) 5 p
[2,35) 12 0.8
[35,45) 8 0.8
[45,55) 2 0.4
[55,65) 1 0.2
(1)求n,p的值;
(2)根据以上统计数据填下面2×2列联表,并根据列联表的独立性检验,能否有99%的把握认为以45岁为分界点对“生育二孩放开”政策的支持度有关系?参考数据:
P(K2≥k)0.0500.0100.001
k3.8416.63510.828
${K^2}=\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$
年龄不低于45岁的人数年龄低于45岁的人数合计
支持32932
不支持71118
合计104050

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知圆C经过点A(0,3)和B(3,2)且圆心C在直线y=x上.
(1)求圆C的方程;
(2)求倾斜角为45°且与圆C相切的直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知复数$\frac{2+i}{a-i}$(其中a∈R,i为虚数单位)是纯虚数,则a+i的模为(  )
A.$\frac{5}{2}$B.$\frac{{\sqrt{5}}}{5}$C.$\frac{\sqrt{5}}{2}$D.$\sqrt{5}$

查看答案和解析>>

同步练习册答案