精英家教网 > 高中数学 > 题目详情
19.已知O为平面直角坐标系的原点,F2为双曲线$\frac{{x}^{2}}{{a}^{2}}$$-\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的右焦点,过双曲线左顶点A,做两渐近线的平行线分别与y轴交于C、D两点,B为双曲线的右顶点,若以O为圆心,|OF2|为直径的圆是四边形ACBD的内切圆,则装曲线的离心率为,(  )
A.2B.$\sqrt{2}$C.$\sqrt{3}$D.$\frac{2\sqrt{3}}{3}$

分析 先根据双曲线的几何性质可推断出直线AD的方程,进而利用直线AD与四边形ACBD的内切圆相切,结合点到直线的距离公式得到a,b关系,最后求得a和c的关系式,即双曲线的离心率.

解答 解:由题意得:A(-a,0),渐近线方程为y=±$\frac{b}{a}$x,
直线AD的方程为:y=$\frac{b}{a}$(x+a),
即:bx-ay+ab=0,
因为直线AD与四边形ACBD的内切圆相切,
设内切圆的半径为r,
故r=d,即$\frac{c}{2}$=$\frac{|ab|}{\sqrt{{a}^{2}+{b}^{2}}}$?a=b,
∴双曲线的离心率为e=$\frac{c}{a}$=$\sqrt{1+(\frac{b}{a})^{2}}$=$\sqrt{2}$.
故选:B.

点评 本题主要考查了双曲线的简单性质.涉及求双曲线的离心率问题,解题的关键是找到a,b和c的关系,考查运算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

16.已知sinα•cosα=$\frac{1}{8}$,且0<α<$\frac{π}{4}$,则sinα-cosα=(  )
A.$\frac{\sqrt{3}}{2}$B.-$\frac{\sqrt{3}}{2}$C.$\frac{3}{4}$D.-17

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知函数f(x)=x2+ax(a>0)在[-1,2]上的最大值为8,函数g(x)是h(x)=ex的反函数.
(1)求函数g(f(x))的单调区间;
(2)求证:函数y=f(x)h(x)-$\frac{1}{x}$(x>0)恰有一个零点x0,且g(x0)<x02h(x0)-1
(参考数据:e=2.71828…,ln2≈0.693).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.已知函数f(x)=$\left\{\begin{array}{l}{{x}^{2}-4,x≤0}\\{{e}^{x}-5,x>0}\end{array}\right.$若关于x的方程|f(x)|-ax-5=0恰有三个不同的实数解,则满足条件的所有实数a的取值集合为{-e,-$\frac{5}{ln5}$,2,$\frac{5}{2}$}.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.三国时代吴国数学家赵爽所注《周髀算经》中给出了勾股定理的绝妙证明,下面是赵爽的弦图及注文,弦图是一个以勾股形之弦为边的正方形,其面积称为弦实,图中包含四个全等的勾股形及一个小正方形,分别涂成红(朱)色及黄色,其面积称为朱实,黄实,利用2×勾×股+(股-勾)2=4×朱实+黄实=弦实,化简,得勾2+股2=弦2,设勾股中勾股比为1:$\sqrt{3}$,若向弦图内随机抛掷1000颗图钉(大小忽略不计),则落在黄色图形内的图钉数大约为(  )
A.866B.500C.300D.134

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.如图,在直三棱柱ABC-A1B1C1中,AA1=BC=AC=2,AB=2$\sqrt{2}$,D、E分别是的AB,BB1的中点.
(Ⅰ)证明:BC1∥平面A1CD;
(Ⅱ)求二面角D-A1C-E的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.抛物线y2=4x的焦点到双曲线$\frac{{x}^{2}}{{3}^{\;}}$-y2=1的渐近线的距离是(  )
A.$\frac{1}{2}$B.$\frac{\sqrt{2}}{2}$C.1D.$\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.设变量x,y满足约束条件$\left\{\begin{array}{l}x+2y-4≤0\\ 3x+y-3≥0\\ x-y-1≤0\end{array}\right.$,则$z=\frac{y}{x+1}$的最大值为(  )
A.$\frac{9}{7}$B.$\frac{1}{3}$C.0D.2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.若a<b<0,那么下列不等式成立的是(  )
A.ab<b2B.a2<b2C.lg(-ab)<lg(-a2D.2${\;}^{\frac{1}{b}}$<2${\;}^{\frac{1}{a}}$

查看答案和解析>>

同步练习册答案