精英家教网 > 高中数学 > 题目详情
已知函数.
(Ⅰ)若时,,求的最小值;
(Ⅱ)设数列的通项,证明:.
(Ⅰ)(Ⅱ)见解析
(Ⅰ)由已知.
,则当时,,所以.
,则当时,,所以当时,.
综上,的最小值是.
(Ⅱ)证明:令.由(Ⅰ)知,当时,
.
,则.
于是



.
所以.
(1)通过求导的方法研究函数的单调性,进而判断满足条件的的范围,确定其最小值;(2)借助第一问的结论,得到不等式进而构造达到证明不等式的目的.
【考点定位】本题考查导数的应用与不等式的证明,考查学生的分类讨论思想和利用构造法证明不等式的解题能力.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知函数
(1)若处的切线方程;
(2)若在区间上恰有两个零点,求的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

设函数 (为常数)
(Ⅰ)=2时,求的单调区间;
(Ⅱ)当时,,求的取值范围

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

函数
(1)当时,对任意R,存在R,使,求实数的取值范围;
(2)若对任意恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知是函数的两个极值点.
(1)若,求函数的解析式;
(2)若,求实数的最大值;
(3)设函数,若,且,求函数内的最小值.(用表示)

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知,
(1)讨论的单调区间;
(2)若对任意的,且,有,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数
⑴求函数的单调区间;
⑵记函数,当时,上有且只有一个极值点,求实数的取值范围;
⑶记函数,证明:存在一条过原点的直线的图象有两个切点

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

函数的图象经过四个象限的一个充分必要条件是(      )
A.B.C.?D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

若函数
(Ⅰ)当时,求函数的单调增区间;
(Ⅱ)函数是否存在极值.

查看答案和解析>>

同步练习册答案