精英家教网 > 高中数学 > 题目详情

【题目】某学生在一门功课的22次考试中,所得分数茎叶图如图所示,则此学生该门功课考试分数的极差与中位数之和为(

A.117
B.118
C.118.5
D.119.5

【答案】B
【解析】解:22次考试分数最大为98,最小为56,所以极差为98﹣56=42,
从小到大排列,中间两数为76,76,所以中位数为76.
所以此学生该门功课考试分数的极差与中位数之和为42+76=118.
故选B.
【考点精析】关于本题考查的茎叶图,需要了解茎叶图又称“枝叶图”,它的思路是将数组中的数按位数进行比较,将数的大小基本不变或变化不大的位作为一个主干(茎),将变化大的位的数作为分枝(叶),列在主干的后面,这样就可以清楚地看到每个主干后面的几个数,每个数具体是多少才能得出正确答案.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某研究所计划利用宇宙飞船进行新产品搭载试验,计划搭载若干件新产品A,B,该研究所要根据产品的研制成本、产品重量、搭载试验费用和预计收益来决定具体安排,通过调查得到的有关数据如表:

每件A产品

每件B产品

研制成本、搭载试验费用之和(万元)

20

30

产品重量(千克)

10

5

预计收益(万元)

80

60

已知研制成本、搭载试验费用之和的最大资金为300万元,最大搭载重量为110千克,则如何安排这两种产品进行搭载,才能使总预计收益达到最大,求最大预计收益是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在△ABC中,已知2sinBcosA=sin(A+C).
(1)求角A;
(2)若BC=2,△ABC的面积是 ,求AB.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列{an}满足an+1=2an﹣1(n∈N+),a1=2.
(1)求证:数列{an﹣1}为等比数列,并求数列{an}的通项公式;
(2)求数列{nan}的前n项和Sn(n∈N+).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(1)在等差数列中,已知,前项和为,且,求当取何值时, 取得最大值,并求出它的最大值;

(2)已知数列的通项公式是,求数列的前项和.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知向量 与向量 =(2,﹣1,2)共线,且满足 =18,(k + )⊥(k ),求向量 及k的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四边形ABCD为正方形,PD⊥平面ABCD,PD∥QA,QA=AB= PD.

(1)证明:平面PQC⊥平面DCQ
(2)求二面角Q﹣BP﹣C的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=cos2(x+ ),g(x)=1+ sin2x.
(1)设x=x0是函数y=f(x)图象的一条对称轴,求g(x0)的值.
(2)设函数h(x)=f(x)+g(x),若不等式|h(x)﹣m|≤1在[﹣ ]上恒成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】根据下列条件,求直线的方程:
(Ⅰ)过直线l1:2x﹣3y﹣1=0和l2:x+y+2=0的交点,且垂直于直线2x﹣y+7=0;
(Ⅱ)过点(﹣3,1),且在两坐标轴上的截距之和为﹣4.

查看答案和解析>>

同步练习册答案