精英家教网 > 高中数学 > 题目详情

【题目】如图所示,正方体 中, 分别是 的中点,将 沿 折起,使 .

(1)证明: 平面
(2)求二面角 的余弦值.

【答案】
(1)证明:设正方体的棱长为2,
中, ,所以

平面 ,∵ ,∴ 平面 ,∴
所以在 中,得
中,又 ,∴
,∴ 平面 .
(2)解:取 的中点 ,则 ,由(1)知, 平面 .
所以平面 平面 ,所以 平面 ,作 ,垂足为 ,连接
由三垂线定理知,
所以 就是所求二面角 的平面角.
中,
所以 ,所以
所以二面角 的余弦值为 .
【解析】(1)平面图形的翻折问题中,要注意哪些因素改变,哪些因素不改变,由直线与平面图内两条相交直线都有垂直证明直线与平面垂直.
(2)先由二面角的定义找互二面角的一个平面图角,再在三角形中,通过解三角形求角.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】执行如图程序框图,如果输入的a=4,b=6,那么输出的n=(  )

A.3
B.4
C.5
D.6

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】甲船在岛的正南方处,千米,甲船以每小时千米的速度向正北航行,同时乙船自出发以每小时千米的速度向北偏东的方向驶去,当甲,乙两船相距最近时,它们所航行的时间是( )

A. 分钟 B. 分钟 C. 分钟 D. 分钟

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图, 分别是 的中点,将 沿直线 折起,使二面角 的大小为 ,则 与平面 所成角的正切值是( )

A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知正方体 的棱长为3,M,N分别是棱 上的点,且 .
(1)证明: 四点共面;
(2)求几何体 的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系xoy中,圆的参数方程为 (φ为参数),以坐标原点O为极点,x轴的正半轴为极轴的极坐标系中,直线l的极坐标方程为
(1)将圆的参数方程化为普通方程,在化为极坐标方程;
(2)若点P在直线l上,当点P到圆的距离最小时,求点P的极坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知三棱锥 ,底面 是以 为直角顶点的等腰直角三角形, ,二面角 的大小为 .

(1)求直线 与平面 所成角的大小;
(2)求二面角 的正切值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知 ,命题 ,命题 .
(1)若 为真命题,求实数 的取值范围;
(2)若命题 是假命题, 命题 是真命题,求实数 的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】商场销售某一品牌的羊毛衫,购买人数是羊毛衫标价的一次函数,标价越高,购买人数越少.把购买人数为零时的最低标价称为无效价格,已知无效价格为每件300.现在这种羊毛衫的成本价是100/ 件,商场以高于成本价的价格(标价)出售. 问:

1)商场要获取最大利润,羊毛衫的标价应定为每件多少元?

2)通常情况下,获取最大利润只是一种理想结果,如果商场要获得最大利润的75%,那么羊毛衫的标价为每件多少元?

查看答案和解析>>

同步练习册答案