精英家教网 > 高中数学 > 题目详情
在四棱锥P-ABCD中,底面ABCD是边长为1的正方形,PA⊥平面ABCD,PA=AB,M,N分别为PB,AC的中点,
(1)求证:MN∥平面PAD;           
(2)求点B到平面AMN的距离.
分析:(1)连接BD,则BD∩AC=N,利用三角形中位线的性质,可得MN∥PD,利用线面平行的判定,即可得到MN∥平面PAD;           
(2)利用VM-ABN=VB-AMN,可求点B到平面AMN的距离.
解答:(1)证明:连接BD,则BD∩AC=N
∵M,N分别为PB,AC的中点,
∴MN是△BPD的中位线
∴MN∥PD
∵MN?平面PAD,PD?平面PAD
∴MN∥平面PAD;
(2)解:设点B到平面AMN的距离为h,则
∵底面ABCD是边长为1的正方形,PA⊥平面ABCD,PA=AB,
∴AM=AN=
2
2
,MN=
2
2

S△AMN=
3
8

S△ABN=
1
4
,M到平面ABN的距离为
1
2

∴由VM-ABN=VB-AMN,可得
1
3
×
1
4
×
1
2
=
1
3
×
3
8
h

∴h=
3
3
,即点B到平面AMN的距离为
3
3
点评:本题考查线面平行,考查点到平面距离的计算,考查学生分析解决问题的能力,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网如图,在四棱锥P-ABCD中,底面为直角梯形,AD∥BC,∠BAD=90,PA⊥底面ABCD,且PA=AD=AB=2BC=2,M,N分别为PC、PB的中点.
(1)求证:PB⊥DM;
(2)求BD与平面ADMN所成角的大小;
(3)求二面角B-PC-D的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在四棱锥P-ABCD中,底面ABCD是矩形,PA⊥平面ABCD,PA=AD=4.AB=2,AN⊥PC于点N,M是PD中点.
(1)用空间向量证明:AM⊥MC,平面ABM⊥平面PCD.
(2)求直线CD与平面ACM所成的角的正弦值.
(3)求点N到平面ACM的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在四棱锥P-ABCD中,底面ABCD是矩形,O为底面中心,PA⊥平面ABCD,PA=AD=2AB.M是PD的中点
(1)求证:直线MO∥平面PAB;
(2)求证:平面PCD⊥平面ABM.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在四棱锥P-ABCD中,底面ABCD是矩形,已知AB=3,AD=2,PA=2,PD=2
2
,∠PAB=60°.
(1)求证:AD⊥平面PAB;
(2)求二面角A-PB-D的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009•成都模拟)如图,在四棱锥P-ABCD中,底面ABCD为正方形,且PD⊥平面ABCD,PD=AB=1,EF分别是PB、AD的中点,
(I)证明:EF∥平面PCD;
(Ⅱ)求二面角B-CE-F的大小.

查看答案和解析>>

同步练习册答案