精英家教网 > 高中数学 > 题目详情
2.已知f(x)+3f(-x)=2x+1,则f(x)的解析式是f(x)=-x+$\frac{1}{4}$.

分析 根据题意,用-x代替x,得出f(-x)+3f(x)=-2x+1,再利用方程组求出f(x)的解析式.

解答 解:∵f(x)+3f(-x)=2x+1…①,
用-x代替x,得:
f(-x)+3f(x)=-2x+1…②;
②×3-①得:
8f(x)=(-6x+3)-(2x+1)=-8x+2,
∴f(x)=-x+$\frac{1}{4}$.
故答案为:f(x)=-x+$\frac{1}{4}$.

点评 本题考查了用换元法以及方程组求函数解析式的应用问题,是基础题目.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

12.设f(x)=lnx+$\frac{a}{x}$.
(Ⅰ)求f(x)的单调区间;
(2)当a=1时,求实数m的取值范围,使得f(m)-f(x)<$\frac{1}{m}$对任意x>0恒成立.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.求下列函数的定义域:
(1)y=$\frac{(x+2)^{2}}{|x|-x}$;
(2)f(x)=$\frac{{x}^{2}-1}{x-1}$-$\sqrt{4-x}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.若{1,2}⊆A⊆{1,2,3,4,5,6}则满足条件的集合A的个数是16.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.设f(x)=$\left\{\begin{array}{l}{2,|x|≤1}\\{{x}^{2}+1,1<|x|≤3}\end{array}\right.$,求g(x)=f(x+3)+f(3x)的定义域.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.在数列{an}中,an+1=$\frac{{a}_{n}}{{a}_{n}+1}$,且a1=2,则an=$\frac{2}{2n-1}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.集合M={a,b,c}的所有子集是∅,{a},{b},{c},{a,b},{a,c},{b,c},{a,b,c}.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知集合A={x|x2-5x+4≤0},B={x|x2-2ax+a+2<0},若B⊆A,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.已知抛物线y2=4x的焦点为F,准线为l,点P(x0,y0)(y0>0)在其上,线段PF与抛物线交于点Q,若$\overrightarrow{PQ}$=3$\overrightarrow{QF}$,则直线PF的斜率为-2$\sqrt{2}$.

查看答案和解析>>

同步练习册答案