精英家教网 > 高中数学 > 题目详情
定义在{x|x∈R,x≠1}上的函数f(x)满足f(1-x)=-f(1+x),当x>1时,f(x)=(
1
2
)x
,则函数f(x)的图象与函数g(x)=
1
2
cosπ(x+
1
2
)(-3≤x≤5)
的图象的所有交点的横坐标之和等于
8
8
分析:确定函数f(x)的图象关于(1,0)对称,利用对称性,结合中点坐标公式,即可求得结论.
解答:解:∵函数f(x)满足f(1-x)=-f(1+x),
∴f(1-x)+f(1+x)=0,
∴函数f(x)的图象关于(1,0)对称
g(x)=
1
2
cosπ(x+
1
2
)=-
1
2
sinπx(-3≤x≤5)

∴函数f(x)的图象与函数g(x)=
1
2
cosπ(x+
1
2
)(-3≤x≤5)
的图象,如图所示
所有交点的横坐标之和等于2(-1.5+0.5+1.5+4.5)=8
故答案为:8.
点评:本题考查函数图象的对称性,考查数形结合的数学思想,考查学生分析解决问题的能力,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

12、已知f(x)与g(x)是定义在R上的连续函数,如果f(x)与g(x)仅当x=0时的函数值为0,且f(x)≥g(x),那么下列情形不可能出现的是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)是定义在{x|x∈R,x≠0}上的奇函数,当x>0时,f(x)=lnx,则函数y=|x|f(x)+1的图象大致是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=2x+1定义在R上.且f(x)可以表示为一个偶函数g(x)与一个奇函数h(x)之和.
(1)求g(x)与h(x)与的解析式;
(2)设h(x)=t,p(t)=g(2x)+2mh(x)+m2-m-1(m∈R),求出p(t)的解析式;
(3)若p(t)≥m2-m-1对于t∈R恒成立,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源:辽宁 题型:单选题

已知f(x)与g(x)是定义在R上的连续函数,如果f(x)与g(x)仅当x=0时的函数值为0,且f(x)≥g(x),那么下列情形不可能出现的是(  )
A.0是f(x)的极大值,也是g(x)的极大值
B.0是f(x)的极小值,也是g(x)的极小值
C.0是f(x)的极大值,但不是g(x)的极值
D.0是f(x)的极小值,但不是g(x)的极值

查看答案和解析>>

同步练习册答案