精英家教网 > 高中数学 > 题目详情
若存在实数a∈[1,3],使得不等式ax2+(a-2)x-2>0成立,则实数x的取值范围是
[     ]
A.(-∞,-1)∪(2,+∞)
B.[-1,]
C.(-∞,-1)∪(,+∞)
D.(-1,2)
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=|1-
1
x
|

(1)是否存在a<b且a,b∈[1,+∞),使得当函数f(x)的定义域为[a,b]时,值域为[
1
8
a,
1
8
b]
?若存在,求出a,b的值,若不存在,说明理由;
(2)若存在实数a,b(a<b),使得函数f(x)的定义域为[a,b],值域为[ma,mb](m≠0),求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网(Ⅰ)如图,正方形OABC在二阶矩阵M对应的切变变换作用下变为平行四边形OA′B′C′,平行四边形OA'B'C'在二阶矩阵N对应的旋转变换作用下变为平行四边形OA''B''C'',求将正方形OABC变为平行四边形OA''B''C''的变换对应的矩阵.
(Ⅱ)在直角坐标系xOy中,圆O的参数方程为
x=-
2
2
+rcosθ
y=-
2
2
+rsinθ
(θ为参数,r>0).以O为极点,x轴正半轴为极轴,并取相同的单位长度建立极坐标系,直线l的极坐标方程为ρsin(θ+
π
4
)=
2
2
.写出圆心的极标,并求当r为何值时,圆O上的点到直线l的最大距离为3.
(Ⅲ)已知a2+2b2+3c2=6,若存在实数a,b,c,使得不等式a+2b+3c>|x+1|成立,求实数x的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2007•东城区一模)已知函数f(x)=|1-
1x
|
,(x>0).
(Ⅰ)当0<a<b,且f(a)=f(b)时,求证:ab>1;
(Ⅱ)是否存在实数a,b(a<b),使得函数y=f(x)的定义域、值域都是[a,b],若存在,则求出a,b的值,若不存在,请说明理由.
(Ⅲ)若存在实数a,b(a<b),使得函数y=f(x)的定义域为[a,b]时,值域为[ma,mb](m≠0),求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知直线l:y=ax+1-a(a∈R),若存在实数a使得一条曲线与直线l有两个不同的交点,且以这两个交点为端点的线段的长度恰好等于|a|,则称此曲线为直线l的“绝对曲线”.下面给出的三条曲线方程:
①y=-2|x-1|;
②(x-1)2+(y-1)2=1;
③x2+3y2=4.
其中直线l的“绝对曲线”有
 
.(填写全部正确选项的序号)

查看答案和解析>>

同步练习册答案