精英家教网 > 高中数学 > 题目详情
已知点P是曲线C:f(x)=ex+x上的动点,直线l是曲线C在P点处的切线,则直线l倾斜角的取值范围是
 
分析:先根据导数运算对函数 f(x)=ex+x进行求导,再由切线斜率的值等于该点导函数的值,可求得切线斜率的范围,进而可得到倾斜角α的范围.
解答:解:∵f(x)=ex+x,
∴y'=ex+1,
∴tanα=y'=ex+1>1
又∵α∈[0,π),
∴α∈(
π
4
π
2
)

故答案为:(
π
4
π
2
)
点评:本题主要考查函数的求导运算和导数的几何意义.导数是高等数学下放到高中的新内容,是每年高考的热点问题,一定要好好复习.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知点P是直角坐标平面内的动点,点P到直线x=-
p
2
-1
(p是正常数)的距离为d1,到点F(
p
2
,0)
的距离为d2,且d1-d2=1.(1)求动点P所在曲线C的方程;
(2)直线l 过点F且与曲线C交于不同两点A、B,分别过A、B点作直线l1:x=-
p
2
的垂线,对应的垂足分别为M、N,求证=
FM
FN
=0

(3)记S1=S△FAM,S2=S△FMN,S3=S△FEN(A、B、M、N是(2)中的点),λ=
S
2
2
S1S3
,求λ 的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知一条曲线C在y轴右侧,C上每一点到点F(1,0)的距离减去它到y轴距离的差都是1.
(1)求曲线C的方程;
(2)(文科做)已知点P是曲线C上一个动点,点Q是直线x+2y+5=0上一个动点,求|PQ|的最小值.
(理科做)是否存在正数m,对于过点M(m,0)且与曲线C有两个交点A,B的任一直线,都有
FA
FB
<0
?若存在,求出m的取值范围;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

已知点P是曲线C:f(x)=ex+x上的动点,直线l是曲线C在P点处的切线,则直线l倾斜角的取值范围是________.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知点P是曲线C:f(x)=ex+x上的动点,直线l是曲线C在P点处的切线,则直线l倾斜角的取值范围是______.

查看答案和解析>>

同步练习册答案