精英家教网 > 高中数学 > 题目详情
已知点P是直角坐标平面内的动点,点P到直线x=-
p
2
-1
(p是正常数)的距离为d1,到点F(
p
2
,0)
的距离为d2,且d1-d2=1.(1)求动点P所在曲线C的方程;
(2)直线l 过点F且与曲线C交于不同两点A、B,分别过A、B点作直线l1:x=-
p
2
的垂线,对应的垂足分别为M、N,求证=
FM
FN
=0

(3)记S1=S△FAM,S2=S△FMN,S3=S△FEN(A、B、M、N是(2)中的点),λ=
S
2
2
S1S3
,求λ 的值.
分析:(1)设动点为P(x,y),依据题意,有|x+
p
2
+1|-
(x-
p
2
)
2
+y2
=1
,化简得y2=2px,由此能求出动点P所在曲线C的方程.
(2)由题意可知,当过点F的直线l(3)的斜率为0时,不合题意,故设直线l:x=my-1,联立方程
y2=2px
x=my+
p
2
,可化为y2-2mpy-p2=0,再由韦达定理进行求解.
(3)依据x1+x2=m(y1+y2)+p=2m2p+p,x1x2=
y
2
1
2p
y
2
2
2p
=
p2
4
,知S1S3=
1
2
(x1+
p
2
)|y1|•
1
2
(x2+
p
2
)|y2|
=
p2
4
•[x1x2+
p
2
(x1+x2)+
p2
4
]
=
1
4
p4(m2+1)
S
2
2
=(
1
2
|y1-y2|•p)2
=
p2
4
[(y1+y2)2-4y1y2]
=p4(1+m2).由此能得到λ 的值.
解答:精英家教网解 (1)设动点为P(x,y),(1分)
依据题意,有|x+
p
2
+1|-
(x-
p
2
)
2
+y2
=1
,化简得y2=2px.(4分)
因此,动点P所在曲线C的方程是:y2=2px.(6分)
(2)由题意可知,当过点F的直线l(3)的斜率为0时,不合题意,
故可设直线l:x=my-1,如图所示.(8分)
联立方程组
y2=2px
x=my+
p
2
,可化为y2-2mpy-p2=0,
则点A(x1,y1)、B(x2,y2)的坐标满足
y1+y2=2mp
y1y2=-p2
.(10分)
又AM⊥l1、BN⊥l1,可得点M(-
p
2
y1)
N(-
p
2
y2)

于是,
FM
=(-p,y1)
FN
=(-p,y2)

因此
FM
FN
=(-p,y1)•(-p,y2)=p2+y1y2=0
.(12分)
(3)依据(2)可算出x1+x2=m(y1+y2)+p=2m2p+p,x1x2=
y
2
1
2p
y
2
2
2p
=
p2
4

S1S3=
1
2
(x1+
p
2
)|y1|•
1
2
(x2+
p
2
)|y2|
=
p2
4
•[x1x2+
p
2
(x1+x2)+
p2
4
]
=
1
4
p4(m2+1)
S
2
2
=(
1
2
|y1-y2|•p)2
=
p2
4
[(y1+y2)2-4y1y2]
=p4(1+m2).(16分)
所以,λ=
S
2
2
S1S3
=4
即为所求.(18分)
点评:本题考查直线 和圆锥曲线的位置关系的综合运用,解题时要认真审题,注意挖掘题设中的隐含条件.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知点P是直角坐标平面内的动点,点P到直线l1:x=-2的距离为d1,到点F(-1,0)的距离为d2,且
d2
d1
=
2
2

(1)求动点P所在曲线C的方程;
(2)直线l过点F且与曲线C交于不同两点A、B(点A或B不在x轴上),分别过A、B点作直线l1:x=-2的垂线,对应的垂足分别为M、N,试判断点F与以线段MN为直径的圆的位置关系(指在圆内、圆上、圆外等情况);
(3)记S1=S△FAM,S2=S△FMN,S3=S△FBN(A、B、M、N是(2)中的点),问是否存在实数λ,使S22=λS1S3成立.若存在,求出λ的值;若不存在,请说明理由.
进一步思考问题:若上述问题中直线l1:x=-
a2
c
、点F(-c,0)、曲线C:
x2
a2
+
y2
b2
=1(a>b>0,c=
a2-b2
)
,则使等式S22=λS1S3成立的λ的值仍保持不变.请给出你的判断
 
 (填写“不正确”或“正确”)(限于时间,这里不需要举反例,或证明).

查看答案和解析>>

科目:高中数学 来源: 题型:

已知点P是直角坐标平面内的动点,点P到直线l1:x=-2的距离为d1,到点F(-1,0)的距离为d2,且
d2
d1
=
2
2

(1)求动点P所在曲线C的方程;
(2)直线l过点F且与曲线C交于不同两点A、B(点A或B不在x轴上),分别过A、B点作直线l1:x=-2的垂线,对应的垂足分别为M、N,试判断点F与以线段MN为直径的圆的位置关系(指在圆内、圆上、圆外等情况);
(3)记S1=S△FAM,S2=S△FMN,S3=S△FBN(A、B、M、N是(2)中的点),问是否存在实数λ,使
S
2
2
S1S3
成立.若存在,求出λ的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知点P是直角坐标平面内的动点,点P到直线x=-
p
2
-1
(p是正常数)的距离为d1,到点F(
p
2
,0)
的距离为d2,且d1-d2=1.
(1)求动点p所在曲线C的方程
(2)直线l过点F且与曲线C交于不同两点A、B,分别过A、B点作直线l1:x=-
p
2
的垂线,对应的垂足分别为M、N,求证:FM⊥FN.

查看答案和解析>>

科目:高中数学 来源:2011-2012学年重庆市高三第五次月考理科数学 题型:解答题

已知点P是直角坐标平面内的动点,点P到直线的距离为d1,到点F(– 1,0)的距离为d2,且

(1)    求动点P所在曲线C的方程;

(2)    直线过点F且与曲线C交于不同两点AB(点AB不在x轴上),分别过AB点作直线的垂线,对应的垂足分别为,试判断点F与以线段为直径的圆的位置关系(指在圆内、圆上、圆外等情况);

(3)    记(AB是(2)中的点),问是否存在实数,使成立.若存在,求出的值;若不存在,请说明理由.

 

 

查看答案和解析>>

同步练习册答案