精英家教网 > 高中数学 > 题目详情
已知一条曲线C在y轴右侧,C上每一点到点F(1,0)的距离减去它到y轴距离的差都是1.
(1)求曲线C的方程;
(2)(文科做)已知点P是曲线C上一个动点,点Q是直线x+2y+5=0上一个动点,求|PQ|的最小值.
(理科做)是否存在正数m,对于过点M(m,0)且与曲线C有两个交点A,B的任一直线,都有
FA
FB
<0
?若存在,求出m的取值范围;若不存在,请说明理由.
分析:(1)设P(x,y)是曲线C上任意一点,由题意可知:C上每一点到点F(1,0)的距离与它到直线x=-1的距离相等,可知点P的轨迹是抛物线(去掉顶点).
(2))(文科)设点P(x,y),满足y2=4x,则点P到直线x+2y+5=0的距离|PQ|=
|x+2y+5|
5
=
|
y2
4
+2y+5|
5
=
(y+4)2+4
4
5
,利用二次函数的单调性即可得出;
(理科)设过点M(m,0)(m>0)的直线l与曲线C的交点为A(x1,y1),B(x2,y2).设l的方程为x=ty+m,与抛物线方程联立可得关于y的一元二次方程,可知△>0,即根与系数的关系,由
FA
FB
<0
利用数量积运算并结合根与系数的关系可得m2-6m+1<4t2.进而求得m的取值范围.
解答:解:(1)设P(x,y)是曲线C上任意一点,由题意可知:C上每一点到点F(1,0)的距离与它到直线x=-1的距离相等,点P的轨迹是抛物线(去掉顶点).
可得曲线C的方程为y2=4x(x>0).
(2)(文科)设点P(x,y),满足y2=4x,
则点P到直线x+2y+5=0的距离|PQ|=
|x+2y+5|
5
=
|
y2
4
+2y+5|
5
=
(y+4)2+4
4
5
4
4
5
=
5
5

当y=-4时最小,即|PQ|最小值为
5
5

(理科)设过点M(m,0)(m>0)的直线l与曲线C的交点为A(x1,y1),B(x2,y2).
设l的方程为x=ty+m,
x=ty+m
y2=4x
得y2-4ty-4m=0,△=16(t2+m)>0,且
y1+y2=4t
y1y2=-4m

FA
=(x1-1,y1),
FB
=(x2-1,y2)

FA
FB
<0

∴(x1-1)(x2-1)+y1y2=x1x2-(x1+x2)+1+y1y2<0②
x=
y2
4
,②式可化为
y
2
1
4
y
2
2
4
-(
y
2
1
4
+
y
2
2
4
)+1+y1y2<0

(y1y2)2
16
-
1
4
[(y1+y2)2-2y1y2]+1+y1y2<0

将①代入上式,得m2-6m+1<4t2
∵对任意实数t上式成立,
∴m2-6m+1<(4t2min,而(4t2min=0.
即m2-6m+1<0
3-2
2
<m<3+2
2

∴存在正数m,对于过点M(m,0)且与曲线C有两个交点A,B的任一直线,都有
FA
FB
<0
,且m的取值范围(3-2
2
,3+2
2
)
点评:本题综合考查了抛物线的定义、直线与抛物线相交问题转化为方程联立得到△>0及根与系数的关系、二次函数的单调性、恒成立问题的等价转化等基础知识与基本技能方法,属于难题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知一条曲线C在y轴右边,C上每一点到点F(1,0)的距离减去它到y轴距离的差都是1.
(Ⅰ)求曲线C的方程
(Ⅱ)是否存在正数m,对于过点M(m,0)且与曲线C有两个交点A,B的任一直线,都有
FA
FB
<0?若存在,求出m的取值范围;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知一条曲线C在y轴右边,C上每一点到点F(1,0)的距离减去它到y轴距离的差都等于1,
(1)求曲线C的方程;
(2)若过点M(-1,0)的直线与曲线C有两个交点A,B,且FA⊥FB,求直线l的斜率.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知一条曲线C在y轴右边,C上任意一点到点F1(2,0)的距离减去它到y轴距离的差都是2.
(1)求曲线C的方程;
(2)若双曲线M:x2-
y2
t
=1(t>0)的一个焦点为F1,另一个焦点为2,过F2的直线l与M相交于A、B两点,直线l的法向量为
n
=(k,-1)(k>0),且
OA
OB
=0,求k的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•临沂一模)已知一条曲线C在y轴右边,C上每一点到点F(1,0)的距离减去它到y轴距离的差都是1.
(1)求曲线C的方程;
(2)设n是过原点的直线,l是与n垂直相交于点P,且与曲线C相交于A、B两点的直线,且|
.
OP
|=1
,问:是否存在上述直线l使
.
AP
.
PB
=1
成立?若存在,求出直线l的方程,若不存在,请说明理由.

查看答案和解析>>

同步练习册答案