精英家教网 > 高中数学 > 题目详情
求二次函数f(x)=x2-2ax+2在x∈[-1,1}上的最小值g(a),并指出g(a)的单调区间及其值域.
f(x)图象的对称轴为x=a,开口向上,
当a<-1时,f(x)在[-1,1]上递增,则g(a)=f(-1)=3+2a;
当-1≤a≤1时,g(a)=f(a)=2-a2
当a>1时,f(x)在[-1,1]上递减,则g(a)=f(1)=3-2a;
所以g(a)=
3+2a,a<-1
2-a2,-1≤a≤1
3-2a,a>1

则g(a)的增区间为(-∞,-1)和[-1,0];减区间为(1,+∞)和[0,1].
当a<-1时,g(a)<1;当-1≤a≤1时,1≤g(a)≤2;当a>1时,g(a)<1;
所以g(a)的值域为(-∞,2].
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:单选题

函数f(x)=
2x-x2,(0≤x≤3)
x2+6x,(-2≤x<0)
的值域是(  )
A.RB.[-9,+∞)C.[-8,1]D.[-9,1]

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知函数f(x)=x2-ax+2在[2,+∞)上单调递增,则实数a的取值范围是(  )
A.(-∞,2]B.[2,+∞)C.(-∞,4]D.[4,+∞)

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

如果函数f(x)=4x2-kx-8在区间[5,20]不是单调函数,那么实数k的取值范围是______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知二次函数f(x)满足f(x+1)-f(x)=2x且f(0)=1.
(1)求f(x)的解析式;
(2)当x∈[-1,1]时,不等式:f(x)>2x+m恒成立,求实数m的范围.
(3)设g(t)=f(2t+a),t∈[-1,1],求g(t)的最大值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

设a为实数,函数f(x)=2x2+(x-a)|x-a|.
(1)若f(0)≥1,求a的取值范围;
(2)求f(x)的最小值;
(3)设函数h(x)=f(x),x∈(a,+∞),求不等式h(x)≥1的解集.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知函数f(x)=
x2+ax+1,x≥1
ax2+x+1,x<1
在R上是单调递增函数,则实数a的取值范围是______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

对于任意实数,函数恒为正值,求的取值范围.
 

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

,则(     )
A.b<a<cB.c<a<bC.c<b<aD.a<c<b

查看答案和解析>>

同步练习册答案