精英家教网 > 高中数学 > 题目详情
函数f(x)=
2x-x2,(0≤x≤3)
x2+6x,(-2≤x<0)
的值域是(  )
A.RB.[-9,+∞)C.[-8,1]D.[-9,1]
当0≤x≤3,f(x)=2x-x2=-(x-1)2+1,对称轴为x=1,抛物线开口向下,
∵0≤x≤3,
∴当x=1时,函数f(x)最大为1,当x=3时,函数取得最小值-1,
∴-1≤f(x)≤1.
当-2≤x<0,f(x)=x2+6x=(x+3)2-9,对称轴为x=-3,抛物线开口向上,
且函数在[-2,0]上单调递增,
∴-8≤f(x)<0.
综上,-8≤f(x)≤1.
即函数的值域为[-8,1].
故选:C.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知二次函数f(x)=ax2+bx+c和一次函数g(x)=-bx,其中abc满足a>b>c,a+b+c=0,(a,b,c∈R).
(1)求证:两函数的图象交于不同的两点AB
(2)求线段ABx轴上的射影A1B1的长的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知二次函数f(x)=4x2-2(p-2)x-2p2-p+1在区间[-1,1]内至少存在一个实数c,使f(c)>0,求实数p的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

若函数f(x)=x2+4x+5-c的最小值为2,则函数f(x-2009)的最小值为______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知a,b,c是实数,函数f(x)=ax2+bx+c,g(x)=ax+b,当-1≤x≤1时|f(x)|≤1.
(1)证明:|c|≤1;
(2)证明:当-1≤x≤1时,|g(x)|≤2;
(3)设a>0,有-1≤x≤1时,g(x)的最大值为2,求f(x).

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

若关于x的方程
x2-4
=x+m
没有实数解,则实数m的取值范围为______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知f(x)=ax2-c,且-4≤f(1)≤-1,-1≤f(2)≤5,求f(4)的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

求二次函数f(x)=x2-2ax+2在x∈[-1,1}上的最小值g(a),并指出g(a)的单调区间及其值域.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

直线y=1与曲线y=x2-|x|+a有四个交点,则a的取值范围是______.

查看答案和解析>>

同步练习册答案