精英家教网 > 高中数学 > 题目详情
已知二次函数f(x)=ax2+bx+c和一次函数g(x)=-bx,其中abc满足a>b>c,a+b+c=0,(a,b,c∈R).
(1)求证:两函数的图象交于不同的两点AB
(2)求线段ABx轴上的射影A1B1的长的取值范围.
答案见解析
(1)证明:由消去yax2+2bx+c=0
Δ=4b2-4ac=4(-ac)2-4ac=4(a2+ac+c2)=4[(a+c2
a+b+c=0,a>b>c,∴a>0,c<0
c2>0,∴Δ>0,即两函数的图象交于不同的两点.
(2)解:设方程ax2+bx+c=0的两根为x1x2,则x1+x2=-,x1x2=.
|A1B1|2=(x1x2)2=(x1+x2)2-4x1x2

a>b>c,a+b+c=0,a>0,c<0
a>-ac>c,解得∈(-2,-)
的对称轴方程是.
∈(-2,-)时,为减函数
∴|A1B1|2∈(3,12),故|A1B1|∈().
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

进货原价为80元的商品400个,按90元一个售出时,可全部卖出。已知这种商品每个涨价一元,其销售数就减少20个,问售价应为多少时所获得利润最大?

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)已知,若在区间上的最大值为,最小值为,记.
(1)求的解析表达式;   (2)若对一切都有成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知二次函数R,0).(1)当0<时,R)的最大值为,求的最小值.(2)如果[0,1]时,总有||.试求的取值范围.(3)令,当时,的所有整数值的个数为,求证数列的前项的和.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

设函数f(x)=(2a-1)x+b是R上的减函数,则有(  )
A.a>
1
2
B.a<
1
2
C.a≥
1
2
D.a≤
1
2

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

函数f(x)=
2x-x2,(0≤x≤3)
x2+6x,(-2≤x<0)
的值域是(  )
A.RB.[-9,+∞)C.[-8,1]D.[-9,1]

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

设a为实数,函数f(x)=2x2+(x-a)|x-a|.
(1)若f(0)≥1,求a的取值范围;
(2)求f(x)的最小值;
(3)设函数h(x)=f(x),x∈(a,+∞),求不等式h(x)≥1的解集.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

若关于的不等式的解集为空集,则实数的取值范围是                .  

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

对于任意实数,函数恒为正值,求的取值范围.
 

查看答案和解析>>

同步练习册答案