精英家教网 > 高中数学 > 题目详情

己知函数f (x)=e2xR

(1)求 f (x)的反函数图象上点(1,0)处的切线方程。

(2)证明:曲线y=f(x)与曲线y=有唯一公共点;

(3)设a﹤b,比较的大小,并说明理由。

练习册系列答案
相关习题

科目:高中数学 来源: 题型:


画出2x-3<y≤3表示的区域,并求出所有正整数解.

查看答案和解析>>

科目:高中数学 来源: 题型:


查看答案和解析>>

科目:高中数学 来源: 题型:


己知函数f(x)=在[-1,1]上的最大值为M(a) ,则函数g(x)=M(x)-的零点个数为

A. 1个     B. 2个     C. 3个       D. 4个  

查看答案和解析>>

科目:高中数学 来源: 题型:


已知数列{an}是首项为-1,公差d 0的等差数列,且它的第2、3、6项依次构成等比数列{ bn}的前3项。

(1)求{an}的通项公式;

(2)若{ bn}的前项和为Sn,求使得Sn﹤400的n的最大值。

查看答案和解析>>

科目:高中数学 来源: 题型:


双曲线的一条渐近线方程为,则________.

查看答案和解析>>

科目:高中数学 来源: 题型:


的二项展开式中,所有二项式系数和为,则该展开式中的常数项为         .

查看答案和解析>>

科目:高中数学 来源: 题型:


已知函数的反函数为,则___________.

查看答案和解析>>

科目:高中数学 来源: 题型:


函数的定义域是

    A. B.    C. D.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         

查看答案和解析>>

同步练习册答案