精英家教网 > 高中数学 > 题目详情

已知,,且.
(1)将表示为的函数,并求的单调增区间;
(2)已知分别为的三个内角对应的边长,若,且,
,求的面积.

(1)增区间为;(2)

解析试题分析:(1)由数量积为0可得方程,由三角函数的公式化简可得,再由,可得单调递增区间;(2)结合(1)可得,进而可得,由余弦定理可得,代入面积公式,计算可得答案.
试题解析:(1)由,


,即增区间为
(2)因为,所以,
,因为,所以
由余弦定理得:,即
,因为,所以

考点:1、数量积判断两个平面向量的垂直关系;2、两角和与差的正弦函数;3、正弦函数的单调性;4、正弦定理;5、余弦定理;6、三角形面积.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

在锐角△ABC中,角的对边分别为,且
(1)确定角C的大小;
(2)若,且△ABC的面积为,求的值。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,渔船甲位于岛屿A的南偏西60°方向的B处,且与岛屿A相距12海里,渔船乙以10海里/时的速度从岛屿A出发沿正北方向航行,若渔船甲同时从B处出发沿北偏东α的方向追赶渔船乙,刚好用2小时追上,此时到达C处.

(1)求渔船甲的速度;
(2)求sinα的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数.
(1)求函数的单调增区间;
(2)在中,分别是角的对边,且,求的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本题满分12分)在中,分别是角的对边,且.
(1)求角的大小;
(2)若,求的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

中,角的对边分别为.
(1)求;
(2)若,求的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,△ABC中.角A、B、C所对边的长分别为a、b、c满足c=l,以AB为边向△ABC外作等边三角形△ABD.

(1)求∠ACB的大小;
(2)设∠ABC=.试求函数的最大值及取得最大值时的的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

中,角所对的边分别为,已知,,,求.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

在△ABC中,∠A、∠B、∠C所对的边长分别是a、b、c.
(1)若c=2,C=,且△ABC的面积为,求a、b的值;
(2)若sinC+sin(B-A)=sin2A,试判断△ABC的形状.

查看答案和解析>>

同步练习册答案