精英家教网 > 高中数学 > 题目详情
4.已知函数f(x+1)=$\frac{2x+1}{x+1}$,则曲线y=f(x)在点(1,f(1))处切线的斜率为(  )
A.1B.-1C.2D.-2

分析 化简函数的解析式,求出函数的导数,然后求解切线的斜率.

解答 解:由已知得$f(x)=\frac{2x-1}{x}=2-\frac{1}{x}$,则$f'(x)=\frac{1}{x^2}$,所以f'(1)=1.
故选:A.

点评 本题考查函数的导数的应用,切线的斜率的求法,考查计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

14.某校高二年级共1000人,从参加期末数学考试的学生中抽出20名学生,将其成绩(均为整数)分成六段[40,50),[50,60)…[90,100],然后画出如图所示频率分布直方图,但是缺失了第四组[70,80)的信息.观察图形的信息,回答下列问题.
(1)求第四组[70,80)的频率;并估计该年级分数在该段的人数.
(2)估计该年级这次数学考试的平均数.
(3)在样本中,从成绩是[50,60)和[60,70)的两段学生中任意选两人,求他们在同一分数段的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.等差数列{an}的前n项和记为Sn,已知S10=10,S20=220,求通项an

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.对定义域分别为D1,D2的函数y=f(x),y=g(x),规定:函数h(x)=$\left\{\begin{array}{l}{f(x)•g(x),x∈{D}_{1}且x∈{D}_{2}}\\{f(x),x∈{D}_{1}且x∉{D}_{2}}\\{g(x),x∉{D}_{1}且x∈{D}_{2}}\end{array}\right.$,f(x)=x-2(x≥1),g(x)=-2x+3(x≤2),则h(x)的单调减区间是(-∞,1),[$\frac{7}{4}$,2].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知一个几何体的三视图如图,求出它的表面积和体积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知α∈($\frac{π}{2}$,π),且sinα+cosα=-$\frac{{\sqrt{3}}}{3}$,则cos2α=(  )
A.$\frac{{\sqrt{5}}}{3}$B.$-\frac{{\sqrt{5}}}{3}$C.$\frac{{2\sqrt{5}}}{3}$D.$-\frac{{2\sqrt{5}}}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.在△ABC中,a,b,c分别为内角A,B,C的对边,已知a=$\sqrt{3}$,b=2$\sqrt{2}$,B=2A.
(1)求sinA;
(2)求边长c.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.在平面直角坐标系下,直线l:$\left\{\begin{array}{l}x=1+\frac{{\sqrt{2}}}{2}t\\ y=\frac{{\sqrt{2}}}{2}t\end{array}$(t为参数),以原点O为极点,以x轴为非负半轴为极轴,取相同长度单位建立极坐标系,曲线C的极坐标方程为ρ-4cosθ=0.
(Ⅰ)写出直线l的普通方程和曲线C的直角坐标方程;
(Ⅱ)若直线l与曲线C交于A,B两点,求|AB|的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.设函数f(x)=$\left\{\begin{array}{l}{2f(x-2),x∈(1,+∞)}\\{1-|x|,x∈[-1,1]}\end{array}\right.$,若关于x的方程f(x)-loga(x+1)=0(a>0且a≠1)在区间[0,5]内恰有5个不同的根,则实数a的取值范围是(  )
A.(1,$\sqrt{3}$)B.($\root{4}{5}$,+∞)C.($\sqrt{3}$,+∞)D.($\root{4}{5}$,$\sqrt{3}$)

查看答案和解析>>

同步练习册答案