精英家教网 > 高中数学 > 题目详情
14.设函数f(x)=$\left\{\begin{array}{l}{2f(x-2),x∈(1,+∞)}\\{1-|x|,x∈[-1,1]}\end{array}\right.$,若关于x的方程f(x)-loga(x+1)=0(a>0且a≠1)在区间[0,5]内恰有5个不同的根,则实数a的取值范围是(  )
A.(1,$\sqrt{3}$)B.($\root{4}{5}$,+∞)C.($\sqrt{3}$,+∞)D.($\root{4}{5}$,$\sqrt{3}$)

分析 画出函数的图象,利用数形结合,推出不等式,即可得到结果.

解答 解:函数f(x)=$\left\{\begin{array}{l}{2f(x-2),x∈(1,+∞)}\\{1-|x|,x∈[-1,1]}\end{array}\right.$,x在区间[-1,5]上的图象如图:
关于x的方程f(x)-loga(x+1)=0(a>0且a≠1)在区间[0,5]内恰有5个不同的根,就是f(x)=loga(x+1)恰有5个不同的根,
函数y=f(x)与函数y=loga(x+1)恰有5个不同的交点,
由图象可得:$\left\{\begin{array}{l}{lo{g}_{a}3<2}\\{lo{g}_{a}5<4}\end{array}\right.$,解得a$>\sqrt{3}$.
故选:C.

点评 本题考查函数零点个数的判断,考查数形结合,分析问题解决问题的能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

4.已知函数f(x+1)=$\frac{2x+1}{x+1}$,则曲线y=f(x)在点(1,f(1))处切线的斜率为(  )
A.1B.-1C.2D.-2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知唐校长某日晨练时,行走的时间(x)与离家的直线距离(y)之间的函数图象(如图).若用黑点表示唐校长家的位置,则唐校长晨练所走的路线可能是(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.已知梯形ABCD的上底AD长为1,下底BC长为4,对角线AC长为4,BD长为3,则梯形ABCD的腰AB长为$\frac{4\sqrt{10}}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.在等差数列{an}中,2(a1+a4+a7)+3(a9+a11)=24,则S13+2a7=(  )
A.17B.26C.30D.56

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知a>1,那么a+$\frac{1}{a-1}$的最小值是(  )
A.2$\sqrt{\frac{a}{a-1}}$B.$\sqrt{5}$+1C.3D.2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.各项均为实数的等比数列{an},前n项和为Sn,若S10=1,S30=7,则S40=15.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.若函数y=f(x)的定义域是[0,2],则函数f(2x)的定义域是(  )
A.[0,1]B.[0,1]C.[0,1]∪(1,4]D.(0,1)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.在锐角三角形中,角A,B,C对边分别为a,b,c,若3($\frac{sinB}{sinA}$+$\frac{sinA}{sinB}$)=8cosC,则$\frac{{a}^{2}+{b}^{2}}{{c}^{2}}$=4.

查看答案和解析>>

同步练习册答案