精英家教网 > 高中数学 > 题目详情
9.在等差数列{an}中,2(a1+a4+a7)+3(a9+a11)=24,则S13+2a7=(  )
A.17B.26C.30D.56

分析 利用等差数列的通项公式性质及其求和公式即可得出.

解答 解:由2(a1+a4+a7)+3(a9+a11)=24,
利用等差数列的性质可得:6a4+6a10=24,∴2a7=4,解得a7=2.
则S13+2a7=$\frac{13({a}_{1}+{a}_{13})}{2}$+2a7=15a7=30.
故选:C.

点评 本题考查了等差数列的通项公式性质及其求和公式,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

19.已知一个几何体的三视图如图,求出它的表面积和体积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.设函数f(x)=x3+3x+sinx,x∈R,若当0<θ<$\frac{π}{2}$时,不等式f(msinθ)+f(1-m)>0恒成立,则实数m的取值范围是(  )
A.(-∞,1]B.[1,+∞)C.$({\frac{1}{2},1})$D.$({\frac{1}{2},1}]$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.已知A={x|3≤x≤22},B={x|2a+1≤x≤3a-5},B⊆A,则a的取值范围为(-∞,9].

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.如图1,已知四边形ABFD为直角梯形,AB∥DF,∠ADF=$\frac{π}{2}$,BC⊥DF,△AED为等边三角形,AD=$\frac{{10\sqrt{3}}}{3}$,DC=$\frac{{2\sqrt{7}}}{3}$,如图2,将△AED,△BCF分别沿AD,BC折起,使得平面AED⊥平面ABCD,平面BCF⊥平面ABCD,连接EF,DF,设G为AE上任意一点.

(1)证明:DG∥平面BCF;
(2)若GC=$\frac{16}{3}$,求$\frac{EG}{GA}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.设函数f(x)=$\left\{\begin{array}{l}{2f(x-2),x∈(1,+∞)}\\{1-|x|,x∈[-1,1]}\end{array}\right.$,若关于x的方程f(x)-loga(x+1)=0(a>0且a≠1)在区间[0,5]内恰有5个不同的根,则实数a的取值范围是(  )
A.(1,$\sqrt{3}$)B.($\root{4}{5}$,+∞)C.($\sqrt{3}$,+∞)D.($\root{4}{5}$,$\sqrt{3}$)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知某圆圆心在x轴上,半径长为5,且截y轴所得线段长为8,求该圆的标准方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知函数f(x)是一次函数,g(x)是反比例函数,且满足f[f(x)]=x=2,g(1)=-1.
(1)求函数f(x)和g(x);
(2)设h(x)=f(x)+g(x),判断函数h(x)在(0,+∞)上的单调性,并用定义加以证明.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知数列{an},{bn},{cn}满足:a1=3,当n≥2时,an-an-1=4n;对于任意的正整数n,c1+2c2+…+2n-1cn=nan,bn=6an-2ncn,设数列{bn}的前n项和为Sn
(I)求数列{cn}的通项公式;
(II)求满足Sn<220的正整数n的集合.

查看答案和解析>>

同步练习册答案