精英家教网 > 高中数学 > 题目详情
18.已知函数f(x)是一次函数,g(x)是反比例函数,且满足f[f(x)]=x=2,g(1)=-1.
(1)求函数f(x)和g(x);
(2)设h(x)=f(x)+g(x),判断函数h(x)在(0,+∞)上的单调性,并用定义加以证明.

分析 (1)设f(x)=ax+b,(a≠0),g(x)=$\frac{k}{x}$,(k≠0),推导出a=1,b=1,k=-1,由此能求出结果.
(2)函数h(x)在(0,+∞)上是增函数,利用定义法能进行证明.

解答 解:(1)∵f(x)是一次函数,g(x)是反比例函数,
∴设f(x)=ax+b,(a≠0),g(x)=$\frac{k}{x}$,(k≠0),
∴f[f(x)]=x+2,∴a(ax+b)+b=x+2,
∴a2x+(a+1)b=x+2,
∴$\left\{\begin{array}{l}{{a}^{2}=1}\\{(a+1)b=2}\end{array}\right.$,∴a=1,b=1,∴f(x)=x+1,
∵g(1)=-1,∴k=-1,∴g(x)=-$\frac{1}{x}$.
(2)判断:函数h(x)在(0,+∞)上是增函数,
由(1)知h(x)=$x-\frac{1}{x}$+1设x1,x2是(0,+∞)上的任意两个实数,且x1<x2
$h({x}_{1})-h({x}_{2})=({x}_{1}-\frac{1}{{x}_{1}})-({x}_{2}-\frac{1}{{x}_{2}})$=(x1-x2)+$\frac{{x}_{1}-{x}_{2}}{{x}_{1}{x}_{2}}$=(x1-x2)(1+$\frac{1}{{x}_{1}{x}_{2}}$),
∵0<x1<x2,∴x1-x2<0,x1x2>0,
∴h(x1)-h(x2)<0,
∴函数h(x)在(0,+∞)上是单调递增函数.

点评 本题考查函数的解析式的求法,考查函数的单调的判断与证明,是基础题,解题时要认真审题,注意函数性质的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

8.已知椭圆C:$\frac{x^2}{a^2}$+$\frac{y^2}{b^2}$=1(a>b>0)的离心率为$\frac{{\sqrt{5}}}{3}$,且过点P(3,2).
(1)求椭圆C的标准方程;
(2)设与直线OP(O为坐标原点)平行的直线l交椭圆C于A,B两点,求证:直线PA,PB与x轴围成一个等腰三角形.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.在等差数列{an}中,2(a1+a4+a7)+3(a9+a11)=24,则S13+2a7=(  )
A.17B.26C.30D.56

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.各项均为实数的等比数列{an},前n项和为Sn,若S10=1,S30=7,则S40=15.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.函数f(x)=$\left\{\begin{array}{l}{2x+1,x≥0}\\{{x}^{2}-2,x<0}\end{array}\right.$   则f(a)≤1的解集为$[-\sqrt{3},0]$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.若函数y=f(x)的定义域是[0,2],则函数f(2x)的定义域是(  )
A.[0,1]B.[0,1]C.[0,1]∪(1,4]D.(0,1)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知全集U=R,集合A={x|-1≤x<2},B={x|(x-2)(x-k)≥0}.
(1)若k=1,求A∩∁UB;
(2)若A∩B=∅,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知曲线C:$\frac{x^2}{4}+\frac{y^2}{9}=1$,直线l:$ρ=\frac{6}{2cosθ+sinθ}$(θ为参数).
(Ⅰ)写出曲线C的参数方程,直线l的普通方程;
(Ⅱ)过曲线C上任一点P作与l夹角为45°的直线,交l于点A,求|PA|的最大值与最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.设$f(x)=sin\frac{1}{2}πx,g(x)=\frac{1}{6}(x-2)$,则方程f(x)=g(x)的所有解的和为10.

查看答案和解析>>

同步练习册答案