精英家教网 > 高中数学 > 题目详情

已知等差数列{an}的公差d<0,前n项的和Sn满足:S20>0,S21<0,那么数列{Sn}中最大的项是


  1. A.
    S9
  2. B.
    S10
  3. C.
    S19
  4. D.
    S20
B
分析:由已知等差数列{an}的公差d<0,可得数列{an}为递减数列,由等差数列的性质可推得a10>0,a11<0,故数列{an}的前10项都为正数,从第11项开始全为负数,因此前10项和最大.
解答:由已知等差数列{an}的公差d<0,可得数列{an}为递减数列,
S20==10(a1+a20)=10(a10+a11)>0,即a10+a11>0;
同理由S21<0,可得S21===21a11<0,即a11<0,
综上可得,a10>0,a11<0,结合数列递减的特点,
可得数列{an}的前10项都为正数,从第11项开始全为负数,因此前10项和最大.
故选B.
点评:本题为等差数列前n项和的最值问题,从数列自身的变化趋势来解决问题是关键,属基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知等差数列{an},公差d不为零,a1=1,且a2,a5,a14成等比数列;
(1)求数列{an}的通项公式;
(2)设数列{bn}满足bn=an3n-1,求数列{bn}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:

已知等差数列{an}中:a3+a5+a7=9,则a5=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知等差数列{an}满足:a5=11,a2+a6=18.
(1)求{an}的通项公式;
(2)若bn=an+q an(q>0),求数列{bn}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:

已知等差数列{an}满足a2=0,a6+a8=-10
(1)求数列{an}的通项公式;     
(2)求数列{|an|}的前n项和;
(3)求数列{
an2n-1
}的前n项和.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网已知等差数列{an}中,a4a6=-4,a2+a8=0,n∈N*
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)若{an}为递增数列,请根据如图的程序框图,求输出框中S的值(要求写出解答过程).

查看答案和解析>>

同步练习册答案