精英家教网 > 高中数学 > 题目详情

【题目】已知曲线C1的极坐标方程为ρ=6cosθ,曲线C2的极坐标方程为θ= (p∈R),曲线C1 , C2相交于A,B两点. (Ⅰ)把曲线C1 , C2的极坐标方程转化为直角坐标方程;
(Ⅱ)求弦AB的长度.

【答案】解:(Ⅰ)曲线C2 (p∈R) 表示直线y=x,
曲线C1:ρ=6cosθ,即ρ2=6ρcosθ
所以x2+y2=6x即(x﹣3)2+y2=9
(Ⅱ)∵圆心(3,0)到直线的距离
r=3所以弦长AB= =
∴弦AB的长度
【解析】(Ⅰ)利用直角坐标与极坐标间的关系,即利用ρcosθ=x,ρsinθ=y,ρ2=x2+y2 , 进行代换即得曲线C2及曲线C1的直角坐标方程.(Ⅱ)利用直角坐标方程的形式,先求出圆心(3,0)到直线的距离,最后结合点到直线的距离公式弦AB的长度.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知双曲线C1 =1,双曲线C2 =1(a>0,b>0)的左、右焦点分别为F1 , F2 , M 是双曲线C2 一条渐近线上的点,且OM⊥MF2 , 若△OMF2的面积为 16,且双曲线C1 , C2的离心率相同,则双曲线C2的实轴长为(
A.4
B.8
C.16
D.32

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】极坐标系与直角坐标系xoy有相同的长度单位,以原点O为极点,以x轴正半轴为极轴.已知直线l的参数方程为 (t为参数),曲线C的极坐标方程为ρsin2θ=8cosθ. (I)求C的直角坐标方程;
(Ⅱ)设直线l与曲线C交于A,B两点,求弦长|AB|.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在等比数列{an}中,公比q>1,且满足a2+a3+a4=28,a3+2是a2与a4的等差中项.
(1)求数列{an}的通项公式;
(2)若bn=log2an+5 , 且数列{bn}的前n项的和为Sn , 求数列{ }的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】△ABC的内角A,B,C所对的边分别为a,b,c.向量 =(a, b)与 =(cosA,sinB)平行. (Ⅰ)求A;
(Ⅱ)若a= ,b=2,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知正三棱柱ABC﹣A′B′C′如图所示,其中G是BC的中点,D,E分别在线段AG,A′C上运动,使得DE∥平面BCC′B′,CC′=2BC=4.
(1)求二面角A′﹣B′C﹣C′的余弦值;
(2)求线段DE的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若命题p:从有2件正品和2件次品的产品中任选2件得到都是正品的概率为三分之一;命题q:在边长为4的正方形ABCD内任取一点M,则∠AMB>90°的概率为 ,则下列命题是真命题的是(
A.p∧q
B.(p)∧q
C.p∧(q)
D.q

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】大学开设甲、乙、丙三门选修课供学生任意选修(也可不选),假设学生是否选修哪门课彼此互不影响.已知某学生只选修甲一门课的概率为0.08,选修甲和乙两门课的概率为0.12,至少选修一门的概率是0.88.
(1)求该学生选修甲、乙、丙的概率分别是多少?
(2)用ξ表示该学生选修的课程门数和没有选修的课程门数的乘积,求ξ的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如甲图所示,在矩形ABCD中,AB=4,AD=2,E是CD的中点,将△ADE沿AE折起到△D1AE位置,使平面D1AE⊥平面ABCE,得到乙图所示的四棱锥D1﹣ABCE.
(Ⅰ)求证:BE⊥平面D1AE;
(Ⅱ)求二面角A﹣D1E﹣C的余弦值.

查看答案和解析>>

同步练习册答案