精英家教网 > 高中数学 > 题目详情
已知矩形ABCD所在平面,PA=AD=,E为线段PD上一点,G为线段PC的中点.
(1)当E为PD的中点时,求证:
(2)当时,求证:BG//平面AEC.
(1)过E作EH⊥AD,垂足为H,连接CH.


,∴,∴BD⊥CH,
∴BD⊥CE。    (6分)
(2)取PE的中点F,连接GF,BF。
∵G为PC的中点,
∴GF//CE
∴GF//平面ACE。连接BD交AC与点O,连接OE.
∵E为DF的中点,
∴BF//OE
∴BF//平面ACE。∵,
∴平面BGF//平面AEC。
∴BG//平面AEC……(12分)
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:单选题

如图,ABCD-A1B1C1D1为正方体,下面结论错误的是
A.BD∥平面CB1D1B.AC1⊥BD
C.AC1⊥平面CB1D1D.异面直线AD与CB1角为60°

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

是两条不同的直线,是两个不同的平面,则下列命题中的假命题是
A.若B.若
C.若D.若

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分14分)
如图5所示,在三棱锥中,,平面平面于点

(1)证明△为直角三角形;
(2)求直线与平面所成角的正弦值

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

.(本题满分12分)
如图甲,直角梯形中,,点分别在上,且,现将梯形沿折起,使平面与平面垂直(如图乙).
(Ⅰ)求证:平面
(Ⅱ)当的长为何值时,二面角的大小为

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分14分)
已知四棱锥的底面为菱形,且相交于点.
(Ⅰ)求证:底面
(Ⅱ)求直线与平面所成角的正弦值;
(Ⅲ)若上的一点,且,求的值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

如图,正方体棱长为1,点,且,有以下四个结论:
,②;③.;④MN与是异面直线、其中正确结论的序号是________ (注:把你认为正确命题的序号都填上)

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)
如图所示的几何体是由以正三角形为底面的直棱柱
被平面所截而得. 的中点.
(Ⅰ)当时,求平面与平面的夹角的余弦值;
(Ⅱ)当为何值时,在棱上存在点,使平面

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知斜三棱柱,,,在底面上的射影恰为的中点,又知.

(Ⅰ)求证:平面;    
(Ⅱ)求到平面的距离;
(Ⅲ)求二面角的大小。

查看答案和解析>>

同步练习册答案