ÒÑÖªÖ±ÏßlÓëÍÖÔ²C£º
x2
3
+
y2
2
=1
½»ÓÚP£¨x1£¬y1£©£¬Q£¨x2£¬y2£©Á½²»Í¬µã£¬ÇÒ¡÷OPQµÄÃæ»ýS¡÷OPQ=
6
2
£¬ÆäÖÐOΪ×ø±êÔ­µã£®
£¨¢ñ£©Ö¤Ã÷x12+x22ºÍy12+y22¾ùΪ¶¨Öµ£»
£¨¢ò£©ÉèÏ߶ÎPQµÄÖеãΪM£¬Çó|OM|•|PQ|µÄ×î´óÖµ£»
£¨¢ó£©ÍÖÔ²CÉÏÊÇ·ñ´æÔÚµãD£¬E£¬G£¬Ê¹µÃS¡÷ODE=S¡÷ODG=S¡÷OEG=
6
2
£¿Èô´æÔÚ£¬Åжϡ÷DEGµÄÐÎ×´£»Èô²»´æÔÚ£¬Çë˵Ã÷ÀíÓÉ£®
£¨¢ñ£©1¡ãµ±Ö±ÏßlµÄбÂʲ»´æÔÚʱ£¬P£¬QÁ½µã¹ØÓÚxÖá¶Ô³Æ£¬
ËùÒÔx1=x2£¬y1=-y2£¬
¡ßP£¨x1£¬y1£©ÔÚÍÖÔ²ÉÏ£¬
¡à
x12
3
+
y12
2
=1
¢Ù
ÓÖ¡ßS¡÷OPQ=
6
2
£¬
¡à|x1||y1|=
6
2
¢Ú
ÓÉ¢Ù¢ÚµÃ|x1|=
6
2
£¬|y1|=1£®´Ëʱx12+x22=3£¬y12+y22=2£»
2¡ãµ±Ö±ÏßlµÄбÂÊ´æÔÚʱ£¬ÊÇÖ±ÏßlµÄ·½³ÌΪy=kx+m£¨m¡Ù0£©£¬½«Æä´úÈë
x2
3
+
y2
2
=1
µÃ
£¨3k2+2£©x2+6kmx+3£¨m2-2£©=0£¬¡÷=36k2m2-12£¨3k2+2£©£¨m2-2£©£¾0
¼´3k2+2£¾m2£¬
ÓÖx1+x2=-
6km
3k2+2
£¬x1•x2=
3(m2-2)
3k2+2
£¬
¡à|PQ|=
1+k2
(x1+x2)2-4x1x2
=
1+k2
2
6
3k2+2-m2
3k2+2
£¬
¡ßµãOµ½Ö±ÏßlµÄ¾àÀëΪd=
|m|
1+k2
£¬
¡àS¡÷OPQ=
1
2
1+k2
2
6
3k2+2-m2
3k2+2
|m|
1+k2
=
6
3k2+2-m2
|m|
3k2+2
£¬
ÓÖS¡÷OPQ=
6
2
£¬
ÕûÀíµÃ3k2+2=2m2£¬´Ëʱx12+x22=£¨x1+x2£©2-2x1x2=£¨-
6km
3k2+2
£©2-2
3(m2-2)
3k2+2
=3£¬
y12+y22=
2
3
£¨3-x12£©+
2
3
£¨3-x22£©=4-
2
3
£¨x12+x22£©=2£»
×ÛÉÏËùÊöx12+x22=3£¬y12+y22=2£®½áÂÛ³ÉÁ¢£®

£¨¢ò£©1¡ãµ±Ö±ÏßlµÄбÂʲ»´æÔÚʱ£¬ÓÉ£¨¢ñ£©Öª
|OM|=|x1|=
6
2
£¬|PQ|=2|y1|=2£¬
Òò´Ë|OM|•|PQ|=
6
£®
2¡ãµ±Ö±ÏßlµÄбÂÊ´æÔÚʱ£¬ÓÉ£¨¢ñ£©Öª
x1+x2
2
=-
3k
2m
£¬
y1+y2
2
=k
x1+x2
2
+m=
-3k2+2m2
2m
=
1
m

|OM|2=£¨
x1+x2
2
£©2+£¨
y1+y2
2
£©2=
9k2
4m2
+
1
m2
=
6m2-2
4m2
=
1
2
(3-
1
m2
)
£¬
|PQ|2=£¨1+k2£©
24(3k2+2-m2)
(2+3k2)2
=
2(2m2-1)
m2
=2£¨2+
1
m2
£©£¬
ËùÒÔ|OM|2|PQ|2=
1
2
(3-
1
m2
)
¡Á2¡Á(2+
1
m2
)
=£¨3-
1
m2
£©£¨2+
1
m2
£©

¡Ü(
3-
1
m2
+2+
1
m2
2
)
2
=
25
4
£®
|OM|•|PQ|¡Ü
5
2
£®µ±ÇÒ½öµ±3-
1
m2
=2+
1
m2
£¬
¼´m=¡À
2
ʱ£¬µÈºÅ³ÉÁ¢£®
×ÛºÏ1¡ã2¡ãµÃ|OM|•|PQ|µÄ×î´óֵΪ
5
2
£»

£¨¢ó£©ÍÖÔ²CÉϲ»´æÔÚÈýµãD£¬E£¬G£¬Ê¹µÃS¡÷ODE=S¡÷ODG=S¡÷OEG=
6
2
£¬
Ö¤Ã÷£º¼ÙÉè´æÔÚD£¨u£¬v£©£¬E£¨x1£¬y1£©£¬G£¨x2£¬y2£©£¬Ê¹µÃS¡÷ODE=S¡÷ODG=S¡÷OEG=
6
2

ÓÉ£¨¢ñ£©µÃ
u2+x12=3£¬u2+x22=3£¬x12+x22=3£»v2+y12=2£¬v2+y22=2£¬y12+y22=2
½âµÃu2=x12=x22=
3
2
£»v2=y12=y22=1£®
Òò´Ëu£¬x1£¬x2Ö»ÄÜ´Ó¡À
6
2
ÖÐÑ¡È¡£¬
v£¬y1£¬y2Ö»ÄÜ´Ó¡À1ÖÐÑ¡È¡£¬
Òò´ËµãD£¬E£¬G£¬Ö»ÄÜÔÚ£¨¡À
6
2
£¬¡À1£©ÕâËĵãÖÐÑ¡È¡Èý¸ö²»Í¬µã£¬
¶øÕâÈýµãµÄÁ½Á½Á¬ÏßÖбØÓÐÒ»Ìõ¹ýÔ­µã£¬ÓëS¡÷ODE=S¡÷ODG=S¡÷OEG=
6
2
ì¶Ü£®
ËùÒÔÍÖÔ²CÉϲ»´æÔÚÂú×ãÌõ¼þµÄÈýµãD£¬E£¬G£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º²»Ïê ÌâÐÍ£º½â´ðÌâ

Èçͼ£¬A¡¢B·Ö±ðÊÇÍÖÔ²
y2
a2
+
x2
b2
=1(a£¾b£¾0)
µÄÉÏ¡¢ÏÂÁ½¶¥µã£¬PÊÇË«ÇúÏß
y2
a2
-
x2
b2
=1
ÉÏÔÚµÚÒ»ÏóÏÞÄÚµÄÒ»µã£¬Ö±ÏßPA¡¢PB·Ö±ð½»ÍÖÔ²ÓÚC¡¢Dµã£¬Èç¹ûDÇ¡ÊÇPBµÄÖе㣮
£¨1£©ÇóÖ¤£ºÎÞÂÛ³£Êýa¡¢bÈçºÎ£¬Ö±ÏßCDµÄбÂʺãΪ¶¨Öµ£»
£¨2£©ÇóË«ÇúÏßµÄÀëÐÄÂÊ£¬Ê¹CDͨ¹ýÍÖÔ²µÄÉϽ¹µã£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º²»Ïê ÌâÐÍ£º½â´ðÌâ

ÒÑÖªÖ±Ïßx-y+1=0¾­¹ýÍÖÔ²S£º
x2
a2
+
y2
b2
=1(a£¾b£¾0)
µÄÒ»¸ö½¹µãºÍÒ»¸ö¶¥µã£®
£¨1£©ÇóÍÖÔ²SµÄ·½³Ì£»
£¨2£©Èçͼ£¬M£¬N·Ö±ðÊÇÍÖÔ²SµÄ¶¥µã£¬¹ý×ø±êÔ­µãµÄÖ±Ïß½»ÍÖÔ²ÓÚP¡¢AÁ½µã£¬ÆäÖÐPÔÚµÚÒ»ÏóÏÞ£¬¹ýP×÷xÖáµÄ´¹Ïߣ¬´¹×ãΪC£¬Á¬½ÓAC£¬²¢ÑÓ³¤½»ÍÖÔ²ÓÚµãB£¬ÉèÖ±ÏßPAµÄбÂÊΪk£®
¢ÙÈôÖ±ÏßPAƽ·ÖÏ߶ÎMN£¬ÇókµÄÖµ£»
¢Ú¶ÔÈÎÒâk£¾0£¬ÇóÖ¤£ºPA¡ÍPB£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º²»Ïê ÌâÐÍ£º½â´ðÌâ

Èçͼ£¬ÒÑÖªÅ×ÎïÏßC£ºx2=2py£¨p£¾0£©ÓëÔ²O£ºx2+y2=8ÏཻÓÚA¡¢BÁ½µã£¬ÇÒ
OA
OB
=0
£¨OΪ×ø±êÔ­µã£©£¬Ö±ÏßlÓëÔ²OÏàÇУ¬ÇеãÔÚÁÓ»¡AB£¨º¬A¡¢BÁ½µã£©ÉÏ£¬ÇÒÓëÅ×ÎïÏßCÏཻÓÚM¡¢NÁ½µã£¬dÊÇM¡¢NÁ½µãµ½Å×ÎïÏßCµÄ½¹µãµÄ¾àÀëÖ®ºÍ£®
£¨¢ñ£©ÇópµÄÖµ£»
£¨¢ò£©ÇódµÄ×î´óÖµ£¬²¢ÇódÈ¡µÃ×î´óֵʱֱÏßlµÄ·½³Ì£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º²»Ïê ÌâÐÍ£º½â´ðÌâ

ÒÑÖªÔ²C¹ý¶¨µãF£¨-
1
4
£¬0£©£¬ÇÒÓëÖ±Ïßx=
1
4
ÏàÇУ¬Ô²ÐÄCµÄ¹ì¼£ÎªE£¬ÇúÏßEÓëÖ±Ïßl£ºy=k£¨x+1£©£¨k¡ÊR£©ÏཻÓÚA¡¢BÁ½µã£®
£¨I£©ÇóÇúÏßEµÄ·½³Ì£»
£¨II£©µ±¡÷OABµÄÃæ»ýµÈÓÚ
10
ʱ£¬ÇókµÄÖµ£»

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º²»Ïê ÌâÐÍ£ºµ¥Ñ¡Ìâ

ÒÑÖªÅ×ÎïÏßx2=4
3
y
µÄ×¼Ïß¹ýË«ÇúÏß
x2
m2
-y2=-1
µÄÒ»¸ö½¹µã£¬ÔòË«ÇúÏßµÄÀëÐÄÂÊΪ£¨¡¡¡¡£©
A£®
3
2
4
B£®
6
2
C£®
3
D£®
3
3

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º²»Ïê ÌâÐÍ£º½â´ðÌâ

Èçͼ£¬ÔÚRt¡÷ABCÖУ¬¡ÏCAB=90¡ã£¬|AB|=2£¬|AC|=
3
2
£¬µãA£¬B¹ØÓÚyÖá¶Ô³Æ£®Ò»ÇúÏßE¹ýCµã£¬¶¯µãPÔÚÇúÏßEÉÏÔ˶¯£¬ÇÒ±£³Ö|PA|+|PB|µÄÖµ²»±ä£®
£¨1£©ÇóÇúÏßEµÄ·½³Ì£»
£¨2£©ÒÑÖªµãS(0£¬-
3
)£¬T(0£¬
3
)
£¬Çó¡ÏSPTµÄ×îСֵ£»
£¨3£©ÈôµãF(1£¬
3
2
)
ÊÇÇúÏßEÉϵÄÒ»µã£¬ÉèM£¬NÊÇÇúÏßEÉϲ»Í¬µÄÁ½µã£¬Ö±ÏßFMºÍFNµÄÇãб½Ç»¥²¹£¬ÊÔÅжÏÖ±ÏßMNµÄбÂÊÊÇ·ñΪ¶¨Öµ£¬Èç¹ûÊÇ£¬Çó³öÕâ¸ö¶¨Öµ£»Èç¹û²»ÊÇ£¬Çë˵Ã÷ÀíÓÉ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º²»Ïê ÌâÐÍ£º½â´ðÌâ

ÉèÍÖÔ²C1£º
x2
a2
+
y2
b2
=1£¨a£¾b£¾0£©ÒÔF1¡¢F2Ϊ×ó¡¢ÓÒ½¹µã£¬ÀëÐÄÂÊe=
1
2
£¬Ò»¸ö¶ÌÖáµÄ¶Ëµã£¨0£¬
3
£©£»Å×ÎïÏßC2£ºy2=4mx£¨m£¾0£©£¬½¹µãΪF2£¬ÍÖÔ²C1ÓëÅ×ÎïÏßC2µÄÒ»¸ö½»µãΪP£®
£¨1£©ÇóÍÖÔ²C1ÓëÅ×ÎïÏßC2µÄ·½³Ì£»
£¨2£©Ö±Ïßl¾­¹ýÍÖÔ²C1µÄÓÒ½¹µãF2ÓëÅ×ÎïÏßC2½»ÓÚA1£¬A2Á½µã£¬Èç¹ûÏÒ³¤|A1A2|µÈÓÚ¡÷PF1F2µÄÖܳ¤£¬ÇóÖ±ÏßlµÄбÂÊ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º²»Ïê ÌâÐÍ£º½â´ðÌâ

ÔÚƽÃæÖ±½Ç×ø±êϵxOyÖУ¬ÒÑÖªÍÖÔ²E£º
x2
a2
+
y2
b2
=1(a£¾b£¾0)
µÄÀëÐÄÂÊΪ
2
2
£¬×ó½¹µãΪF£¬¹ýÔ­µãµÄÖ±Ïßl½»ÍÖÔ²ÓÚM£¬NÁ½µã£¬¡÷FMNÃæ»ýµÄ×î´óֵΪ1£®
£¨1£©ÇóÍÖÔ²EµÄ·½³Ì£»
£¨2£©ÉèP£¬A£¬BÊÇÍÖÔ²EÉÏÒìÓÚ¶¥µãµÄÈýµã£¬Q£¨m£¬n£©Êǵ¥Î»Ô²x2+y2=1ÉÏÈÎÒ»µã£¬Ê¹
OP
=m
OA
+n
OB
£®
¢ÙÇóÖ¤£ºÖ±ÏßOAÓëOBµÄбÂÊÖ®»ýΪ¶¨Öµ£»
¢ÚÇóOA2+OB2µÄÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸