精英家教网 > 高中数学 > 题目详情
2.已知复数$1-i=\frac{2+4i}{z}(i$为虚数单位),则$|\overline z|$等于(  )
A.-1+3iB.-1+2iC.$\sqrt{10}$D.$\sqrt{5}$

分析 把已知等式变形,利用复数代数形式的乘除运算化简求得z,再由$|\overline z|$=|z|结合复数模的公式得答案.

解答 解:∵$1-i=\frac{2+4i}{z}$,
∴$z=\frac{2+4i}{1-i}=\frac{(2+4i)(1+i)}{(1-i)(1+i)}=\frac{-2+6i}{2}=-1+3i$,
∴$|\overline z|$=|z|=$\sqrt{(-1)^{2}+{3}^{2}}=\sqrt{10}$.
故选:C.

点评 本题考查复数代数形式的乘除运算,考查了共轭复数的概念,考查复数模的求法,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

7.已知集合A={x|-3<x<5},B={x|1<x<7},则A∪B为(  )
A.(1,5)B.(-3,1)C.(5,7]D.(-3,7)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.不等式x${\;}^{lo{g}_{\frac{1}{2}}x}$<$\frac{1}{x}$的解集为(  )
A.{x|1<x<2}B.{x|x<1或x>2}C.D.{x|0<x<1或x>2}

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.下列说法正确的个数为(  ) 
①若$\vec a∥\vec b$,则一定存在实数λ,使$\vec a=λ\vec b$;
②已知空间中任意一点O和不共线的三点A,B,C,若满足2$\overrightarrow{OP}=x\overrightarrow{OA}-y\overrightarrow{OB}+z\overrightarrow{OC}$中x-y+z=2,则P与A,B,C共面;
③如图1,在平行六面体中,以A为端点的三条棱长都为1,且彼此的夹角都为60°,那么AC1=$\sqrt{3}$;
④如图2,A∈α,B∈β,AC⊥l,BD⊥l,若AC=BD=CD=1,AB=2,则α,β所成二面角为60°.
A.4个B.3个C.2个D.1个

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知函数f(x)=ex-ax-1.
(1)若函数f(x)在x=ln2处取极值,求a的值;
(2)讨论函数f(x)的单调性.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.在平面直角坐标系xOy中,曲线C1:x2+2y2=2,以O为极点,x轴正半轴为极轴建立极坐标系,曲线C2的极坐标方程为$ρ=\frac{4}{{\sqrt{2}sinθ+cosθ}}$.
(Ⅰ)写出曲线C1的参数方程,曲线C2的直角坐标方程;
(Ⅱ)设M是曲线C1上一点,N是曲线C2上一点,求|MN|的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知全集U={1,2,3,4,5,6,7,8},A={1,2,3},B={5,6,7},则(∁UA)∩B=(  )
A.{5,6,7}B.{4,5,6,8}C.{1,3,5,7}D.{1,2,3,5,6,7}

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.(1)甲、乙两名运动员各自等可能地从红、白、蓝3种颜色的运动服中选择1种,则他们选择相同颜色运动服的概率为多少?
(2)设x∈[0,3],y∈[0,4],求点M落在不等式组:$\left\{\begin{array}{l}x+2y-3≤0\\ x≥0\\ y≥0\end{array}$所表示的平面区域内的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知全集U=R,函数$f(x)=\sqrt{1-{2^x}}$的定义域为M,则∁UM=(  )
A.(-∞,0]B.(0,+∞)C.(-∞,0)D.[0,+∞)

查看答案和解析>>

同步练习册答案