精英家教网 > 高中数学 > 题目详情
已知
2
1-i
+ai=b-2i
,求
 b  a
(3x2-1)dx
=______.
2
1-i
+ai
=
2(1+i)
(1-i)(1+i)
+ai
=1+(1+a)i=b-2i,
∴由复数相等可得
1=b
1+a=-2
,解得a=-3,b=1,
 b  a
(3x2-1)dx
=
 1  -3
(3x2-1)dx
=(x3-x)
|1-3
=24
故答案为:24
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知公差大于零的等差数列{an}的前n项和Sn,且满足:a2•a4=65,a1+a5=18.
(1)求数列{an}的通项公式an
(2)若1<i<21,a1,ai,a21是某等比数列的连续三项,求i值;
(3)是否存在常数k,使得数列{
Sn+kn
}为等差数列,若存在,求出常数k;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

一青蛙从点A0(x0,y0)开始依次水平向右和竖直向上跳动,其落点坐标依次是Ai(xi,yi)(i∈N*),(如图所示,A0(x0,y0)坐标以已知条件为准),Sn表示青蛙从点A0到点An所经过的路程.
(1)若点A0(x0,y0)为抛物线y2=2px(p>0)准线上一点,点A1,A2均在该抛物线上,并且直线A1A2经过该抛物线的焦点,证明S2=3p.
(2)若点An(xn,yn)要么落在y=x所表示的曲线上,要么落在y=x2所表示的曲线上,并且A0(
1
2
1
2
)
,试写出
lim
n→+∞
Sn
(不需证明);
(3)若点An(xn,yn)要么落在y=2
1+8x
-1
所表示的曲线上,要么落在y=2
1+8x
+1
所表示的曲线上,并且A0(0,4),求Sn的表达式.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•烟台一模)已知公差大于零的等差数列{an}的前n项和Sn,且满足:a2•a4=65,a1+a5=18.
(1)若1<i<21,a1,ai,a21是某等比数列的连续三项,求i的值;
(2)设bn=
n(2n+1)Sn
,是否存在一个最小的常数m使得b1+b2+…+bn<m对于任意的正整数n均成立,若存在,求出常数m;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•怀化二模)已知
2
1-i
+ai=b-2i
,求
 b
  a
(3x2-1)dx
=
24
24

查看答案和解析>>

同步练习册答案