如下图,过曲线:上一点作曲线的切线交轴于点,又过作 轴的垂线交曲线于点,然后再过作曲线的切线交轴于点,又过作轴的垂线交曲线于点,,以此类推,过点的切线 与轴相交于点,再过点作轴的垂线交曲线于点(N).
(1) 求、及数列的通项公式;(2) 设曲线与切线及直线所围成的图形面积为,求的表达式; (3) 在满足(2)的条件下, 若数列的前项和为,求证:N.
(1) ,,;(2) ;(3)见解析.
解析试题分析:(1)利用导数求直线切线和切线的方程,从而易得的值,再得直线的方程,知点在直线上,所以,既得通项公式;(2)观察图形利用定积分求表达式;(3)分别求得及表达式,再用数学归纳法、二项式定理及导数的方法证明即可.
试题解析:(1) 由,设直线的斜率为,则.
∴直线的方程为.令,得, 1分
∴, ∴. ∴.
∴直线的方程为.令,得. 2分
一般地,直线的方程为,
由于点在直线上,∴. 3分
∴数列是首项为,公差为的等差数列.∴. 4分
(2)
. 6分
(3)证明: , 8分
∴,.
要证明,只要证明,即只要证明. 9分
证法1:(数学归纳法)
①当时,显然成立;
②假设时,成立,则当时,,
而,
,,
时,也成立,由①②知不等式对一切都成立. 14分
证法2:
.
所以不等式对一切都成立. 14分
证法3:令,则
科目:高中数学 来源: 题型:解答题
已知函数f(x)=aex,g(x)=lnx-lna,其中a为常数,e=2.718…,且函数y=f(x)和y=g(x)的图像在它们与坐标轴交点处的切线互相平行.
(1)求常数a的值;(2)若存在x使不等式>成立,求实数m的取值范围;
(3)对于函数y=f(x)和y=g(x)公共定义域内的任意实数x0,我们把|f(x0)-g(x0)|的值称为两函数在x0处的偏差.求证:函数y=f(x)和y=g(x)在其公共定义域内的所有偏差都大于2.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com