精英家教网 > 高中数学 > 题目详情
如图所给的程序运行结果为S=35,那么判断框中应填入的关于k的条件是(  )
A、k=7B、k≤6
C、k<6D、k>6
考点:程序框图
专题:算法和程序框图
分析:根据程序,依次进行运行得到当S=35时,满足的条件,即可得到结论.
解答: 解:当k=10时,S=1+10=11,k=9,
当k=9时,S=11+9=20,k=8,
当k=8时,S=20+8=28,k=7,
当k=7时,S=28+7=35,k=6,
此时不满足条件输出,
∴判断框中应填入的关于k的条件是k>6,
故选:D.
点评:本题主要考查程序框图的识别和判断,依次将按照程序依次进行运行即可.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知P为抛物线y2=4x上的一个动点,Q为圆C:(x+2)2+(y-3)2=4上一个动点,点P到直线l:x=-1距离为d,则|PQ|+d的最小值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

给出下列四个命题,其中真命题为(  )
①命题“?x∈R,x2+1>3x”的否定是“?x∈R,x2+1≤3x”;
②函数f(x)=sin(2x-
π
4
)在区间[0,
π
2
]上的最小值是-1;
③log0.23.6<(0.3)0.2<1.20.3
④若m∈R,直线(m+2)x+my+1=0与直线(m-2)x+(m+2)y-3=0相互垂直,则m=1.
A、①④B、②④C、②③D、①③

查看答案和解析>>

科目:高中数学 来源: 题型:

复数z满足zi=1+3i,则z在复平面内所对应的点的坐标是(  )
A、(1,-3)
B、(-1,3)
C、(-3,1)
D、(3,-1)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知双曲线C:
x2
a2
-
y2
b2
=1(a>0,b>0),方向向量为
d
=(1,1)的直线与C交于两点A、B,若线段AB的中点为(4,1),则双曲线C的渐近线方程是(  )
A、2x±y=0
B、x±2y=0
C、
2
x±y=0
D、x±
2
y=0

查看答案和解析>>

科目:高中数学 来源: 题型:

双曲线
x2
a2
-
y2
b2
=1
(a>0,b>0)的两焦点为F1,F2,虚轴端点为B1,B2,双曲线的离心率为e1,若椭圆以F1,F2为长轴,以B1,B2为短轴,椭圆的离心率为e2,则e1e2=(  )
A、2
B、1
C、
2
2
D、
1
2

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=sin(2x+
π
6
)+m
(1)写出函数f(x)的周期及单调递减区间;
(2)当x∈[-
π
6
π
3
]时,函数f(x)的最小值为2,求:当x取何值时,函数f(x)取得最大值,最大值为多少?

查看答案和解析>>

科目:高中数学 来源: 题型:

某地区的一种特色水果上市时间仅能持续5个月,预测上市初期和后期会因供不应求使价格呈连续上涨态势,而中期又将出现供大于求使价格下跌.经市场分析,价格模拟函数为以下三个函数中的一个:①f(x)=p•qx;②f(x)=px2+qx+1;③f(x)=x(x-q)2+p.(以上三式中p,q均为常数,且q>1)(注:函数的定义域是[0,5]).其中x=0表示4月1日,x=1表示5月1日,…,依此类推.
(Ⅰ)请判断以上哪个价格模拟函数能准确模拟价格变化走势,为什么?
(Ⅱ)若该果品4月1日投入市场的初始价格定为6元,且接下来的一个月价格持续上涨,并在5 月1日达到了一个最高峰,求出所选函数f(x)的解析式;
(Ⅲ)在(Ⅱ)的条件下,为保护果农的收益,打算在价格下跌期间积极拓宽境外销售,且销售价格为该果品上市期间最低价格的2倍,请你预测该果品在哪几个月内价格下跌及境外销售的价格.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=ex,g(x)=ln(x+m).直线l:y=kx+b经过点P(-1,0)且与曲线y=f(x)相切.
(1)求切线l的方程.
(2)若关于x的不等式kx+b≥g(x)恒成立,求实数m的最大值.
(3)设F(x)=f(x)-g(x),若函数F(x)有唯一的零点x0,求证-1<x0<-
1
2

查看答案和解析>>

同步练习册答案