精英家教网 > 高中数学 > 题目详情

 ,求对应的点的轨迹方程.

点的轨迹是以为圆心,为半径的圆.


解析:

,则

,故有

对应点的轨迹是以为圆心,为半径的圆.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

平面内与两定点A1(-a,0),A2(a,0)(a>0)连线的斜率之积等于非零常数m的点的轨迹,加上A1、A2两点所成的曲线C可以是圆、椭圆成双曲线.
(Ⅰ)求曲线C的方程,并讨论C的形状与m值的关系;
(Ⅱ)当m=-1时,对应的曲线为C1;对给定的m∈(-1,0)∪(0,+∞),对应的曲线为C2,设F1、F2是C2的两个焦点.试问:在C1上,是否存在点N,使得△F1NF2的面积S=|m|a2.若存在,求tanF1NF2的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

平面内与两定点A1(-2,0),A2(2,0)连线的斜率之积等于非零常数m的点的轨迹,加上A1,A2两点,所成的曲线C可以是圆,椭圆或双曲线.
(I)求曲线C的方程,并讨论C的形状与m值的关系.
(Ⅱ)当m=-1时,对应的曲线为C1;对给定的m∈(-∞,-1),对应的曲线为C2,若曲线C1的斜率为1的切线与曲线C2相交于A,B两点,且
OA
OB
=2
(O为坐标原点),求曲线C2的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

本题有(1)、(2)、(3)三个选答题,每题7分,请考生任选2题作答,满分14分.如果多作,则按所做的前两题计分.作答时,先用2B铅笔在答题卡上把所选题目对应的题号涂黑,并将选题号填入括号中.
(1)选修4一2:矩阵与变换
设矩阵M所对应的变换是把坐标平面上的点的横坐标伸长到2倍,纵坐标伸长到3倍的伸缩变换.
(Ⅰ)求矩阵M的特征值及相应的特征向量;
(Ⅱ)求逆矩阵M-1以及椭圆
x2
4
+
y2
9
=1
在M-1的作用下的新曲线的方程.
(2)选修4一4:坐标系与参数方程
已知直线C1
x=1+tcosα
y=tsinα
(t为参数),C2
x=cosθ
y=sinθ
(θ为参数).
(Ⅰ)当α=
π
3
时,求C1与C2的交点坐标;
(Ⅱ)过坐标原点O做C1的垂线,垂足为A,P为OA中点,当α变化时,求P点的轨迹的参数方程.
(3)选修4一5:不等式选讲
已知a,b,c均为正实数,且a+b+c=1.求
4a+1
+
4b+1
+
4c+1
的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,B(-2,0),C(2,0),A(x,y),给出△ABC满足的条件,就能得到动点A的轨迹方程,下表给出了一些条件及方程:
条件 方程
①△ABC周长为10 C1y2=25
②△ABC面积为10 C2x2+y2=4(y≠0)
③△ABC中,∠A=90° C3
x2
9
+
y2
5
=1(y≠0)
则满足条件①、②、③的点A轨迹方程按顺序分别是(  )
A、C3、C1、C2
B、C2、C1、C3
C、C1、C3、C2
D、C3、C2、C1

查看答案和解析>>

科目:高中数学 来源:2011-2012学年宁夏高三第六次月考理科数学试卷 题型:解答题

平面内与两定点连线的斜率之积等于非零常数的点的轨迹,加上 两点,所成的曲线可以是圆,椭圆或双曲线.

(I)求曲线的方程,并讨论的形状与值的关系.

(Ⅱ)当时,对应的曲线为;对给定的,对应的曲线为,若曲线的斜率为的切线与曲线相交于两点,且为坐标原点),求曲线的方程.

 

查看答案和解析>>

同步练习册答案