精英家教网 > 高中数学 > 题目详情
9.平面向量$\overrightarrow{a}$与$\overrightarrow{b}$的夹角为60°,$\overrightarrow{a}$=(2,0),|$\overrightarrow{b}$|=1,则|$\overrightarrow{a}$+2$\overrightarrow{b}$|=(  )
A.$\sqrt{3}$B.2$\sqrt{3}$C.4D.2

分析 由题意求得 $\overrightarrow{a}•\overrightarrow{b}$=1,再根据 $\overrightarrow{a}$+2$\overrightarrow{b}$|=$\sqrt{{(\overrightarrow{a}+2\overrightarrow{b})}^{2}}$,计算求的结果.

解答 解:∵平面向量$\overrightarrow{a}$与$\overrightarrow{b}$的夹角为60°,$\overrightarrow{a}$=(2,0),|$\overrightarrow{b}$|=1,∴$\overrightarrow{a}•\overrightarrow{b}$=2•1•cos60°=1,
则|$\overrightarrow{a}$+2$\overrightarrow{b}$|=$\sqrt{{(\overrightarrow{a}+2\overrightarrow{b})}^{2}}$=$\sqrt{{\overrightarrow{a}}^{2}+4\overrightarrow{a}•\overrightarrow{b}+{4\overrightarrow{b}}^{2}}$=$\sqrt{4+4+4}$=2$\sqrt{3}$,
故选:B.

点评 本题主要考查两个向量的数量积的定义,求向量的模的方法,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

19.关于函数f(x)=$\frac{b}{|x|-a}$(a>0,b>0),有下列命题:
(1)函数f(x)的值域为(-∞,0)∪(0,+∞);
(2)直线x=k与函数f(x)的图象有唯一交点;
(3)函数y=f(x)+1有两个零点;
(4)函数定义域为D,则对于任意x∈D,f(-x)=f(x)
其中所有叙述正确的命题序号是(4).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.若函数y=f(x)(x∈R)满足f(x+1)=-$\frac{1}{f(x)}$,且x∈[-1,1]时,f(x)=1-x2,g(x)=$\left\{\begin{array}{l}{lgx(x>0)}\\{-\frac{1}{x}(x<0)}\end{array}$,则函数h(x)=f(x)-g(x)在区间[-5,5]内的零点的个数为(  )
A.5B.7C.8D.10

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.过圆O外一点M(a,b)向圆O:x2+y2=r2引两条切线,切点分别为A,B,求直线AB的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.集合A中含有三个元素0,-1,x,且x2∈A,则实数x的值为1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.函数y=$\sqrt{3-2x}$的定义域是(  )
A.($\frac{3}{2}$,+∞)B.[$\frac{3}{2}$,+∞)C.(-∞,$\frac{3}{2}$)D.(-∞,$\frac{3}{2}$]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知函数f(x)=x2+2ax+2,x∈[-5,5].
(1)当a=-1时,求函数f(x)的最大值和最小值;
(2)当a∈R时,求函数f(x)的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.如表给出了某校500名12岁男孩中用随机抽样得出的120人的身高(单位cm).
 区间界限[122,126)[126,130)[130,134)[134,138)[138,142)[142,146)
人数  510  22 3320 
 区间界限[146,150)[150,154)[154,158)   
 人数 11 5   
(1)列出样本频率分布表﹔
(2)画出频率分布直方图﹔
(3)估计身高小于134cm的人数占总人数的百分比.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.(1)已知向量$\overrightarrow{a}$=(2,-3),$\overrightarrow{MN}$与$\overrightarrow a$垂直,且|${\overrightarrow{MN}}$|=3$\sqrt{13}$,若点M的坐标为(-3,2),求$\overrightarrow{ON}$(其中O为坐标原点);
(2)设O为△ABC的外心(三角形外接圆的圆心),若$\overrightarrow{AO}$•$\overrightarrow{BC}$=$\frac{1}{2}$|${\overrightarrow{AB}}$|2,求$\frac{{\left|{\overrightarrow{AC}}\right|}}{{\left|{\overrightarrow{AB}}\right|}}$的值.

查看答案和解析>>

同步练习册答案