精英家教网 > 高中数学 > 题目详情
4.集合A中含有三个元素0,-1,x,且x2∈A,则实数x的值为1.

分析 根据集合元素和集合的关系确定x的值,注意元素的互异性的应用.

解答 解:∵x2∈{-1,0,x},
∴x2=0,x2=-1,x2=x,
由x2=0,得x=0,由x2=-1得x无实数解,由x2=x得x=0或x=1.
综上x=1,或x=0.
当x=0时,集合为{1,0,0}不成立.
当x=1时,集合为{-1,0,1}成立.
故答案为:1.

点评 本题主要考查集合元素和集合之间的关系的应用,注意要利用元素的互异性进行检验.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

14.已知函数f(x)=a(x-2)•ex-$\frac{1}{2}$x2+x.
(1)若a=1,求函数f(x)在(2,f(2))处切线方程;
(2)讨论函数f(x)的单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.下列说法中,正确的是①②④.(写出所有正确选项)
①任取x>0,均有3x>2x
②函数是从其定义域到值域的映射.
③y=${(\sqrt{3})^{-x}}$是增函数.   
④y=2|x|的最小值为1.
⑤既是奇函数,又是偶函数的函数一定是f(x)=0(x∈R).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.如图所示,已知三棱柱ABC-A1B1C1中,D是BC的中点,D1是B1C1的中点,设平面A1D1B∩平面ABC=l1,平面ADC1∩平面A1B1C1=l2
(1)求证:l1∥l2
(2)若此三棱柱是各棱长都相等且侧棱垂直于底面,求A1B与AC1所成角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知函数f(x)=3x$-\frac{1}{{3}^{x}}$,函数g(x)=$\left\{\begin{array}{l}{f(x)+2(x≥0)}\\{f(-x)+2(x<0)}\end{array}\right.$,则函数g(x)的最小值为(  )
A.0B.$\frac{3}{2}$C.2D.4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.平面向量$\overrightarrow{a}$与$\overrightarrow{b}$的夹角为60°,$\overrightarrow{a}$=(2,0),|$\overrightarrow{b}$|=1,则|$\overrightarrow{a}$+2$\overrightarrow{b}$|=(  )
A.$\sqrt{3}$B.2$\sqrt{3}$C.4D.2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知{an}为等差数列,若a1+a5+a9=8π,则cosa5的值为(  )
A.$\frac{\sqrt{3}}{2}$B.-$\frac{\sqrt{3}}{2}$C.$\frac{1}{2}$D.-$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.给出下列命题:
①椭圆$\frac{{x}^{2}}{25}$+$\frac{{y}^{2}}{9}$=1与$\frac{{x}^{2}}{9-k}$+$\frac{{y}^{2}}{25-k}$=1(0<k<9)有相等的焦距;
②“直线与双曲线相切”是“直线与双曲线只有一个公共点”的充分不必要条件;
③已知P是曲线$\left\{\begin{array}{l}{x=3cosθ}\\{y=4sinθ}\end{array}\right.$(θ为参数,0≤θ≤π)上一点,坐标原点为O,直线PO的倾斜角为$\frac{π}{4}$,则P点坐标是($\frac{3\sqrt{2}}{2}$,2$\sqrt{2}$);
④直线y=mx+1-m与椭圆$\frac{{x}^{2}}{9}$+$\frac{{y}^{2}}{4}$=1的位置关系随着m的变化而变化;
⑤双曲线$\frac{{x}^{2}}{{a}^{2}}$$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的两个焦点为F1,F2,若双曲线上存在一点P,满足|PF1|=3|PF2|,则双曲线离心率的取值范围(1,2].
其中正确命题的所有序号有①②⑤.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.${({x^2}-1)^2}{({x^3}+\frac{1}{x})^4}$的展开式中x8的系数为(  )
A.24B.20C.12D.10

查看答案和解析>>

同步练习册答案