精英家教网 > 高中数学 > 题目详情
20.若函数y=f(x)(x∈R)满足f(x+1)=-$\frac{1}{f(x)}$,且x∈[-1,1]时,f(x)=1-x2,g(x)=$\left\{\begin{array}{l}{lgx(x>0)}\\{-\frac{1}{x}(x<0)}\end{array}$,则函数h(x)=f(x)-g(x)在区间[-5,5]内的零点的个数为(  )
A.5B.7C.8D.10

分析 结合题意得到函数y=f(x)(x∈R)是周期为2的函数,进而根据f(x)=1-x2与函数g(x)的图象得到交点个数即可.

解答 解:∵f(x+1)=-$\frac{1}{f(x)}$,
∴f(x+2)=f(x),
∴函数f(x)为周期为2的周期函数,
∵x∈[-1,1]时,f(x)=1-x2,所以作出它的图象,
利用函数y=f(x)(x∈R)是周期为2函数,
可作出y=f(x)在区间[-5,5]上的图象,如图所示:

故函数h(x)=f(x)-g(x)在区间[-5,5]内的零点的个数为8.
故选:C.

点评 本题的考点是函数零点与方程根的关系,主要考查函数零点的定义,关键是正确作出函数图象,注意掌握周期函数的一些常见结论:若f(x+a)=f(x),则周期为a;若f(x+a)=-f(x),则周期为2a;若f(x+a)=$\frac{1}{f(x)}$,则周期为2a.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

10.已知x∈{1,0},则实数x的值为0或1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.下列各组函数中,表示同一函数的是(  )
A.f(x)=1,g(x)=x0B.f(x)=|x|,g(x)=$\left\{\begin{array}{l}x,x≥0\\-x,x<0\end{array}\right.$
C.f(x)=x+2,g(x)=$\frac{{{x^2}-4}}{x-2}$D.f(x)=x,g(x)=($\sqrt{x}$)2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知函数f(x)=x2-2ax+1.
(I)当a=2,x∈[-2,3]时,求函数的值域;
(II)求函数f(x)在[-1,2]上的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.下列说法中,正确的是①②④.(写出所有正确选项)
①任取x>0,均有3x>2x
②函数是从其定义域到值域的映射.
③y=${(\sqrt{3})^{-x}}$是增函数.   
④y=2|x|的最小值为1.
⑤既是奇函数,又是偶函数的函数一定是f(x)=0(x∈R).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.某程序框图如图所示,若n=3,a0=1,a1=2,a2=3,a3=-2,x=2.则该程序运行后输出的值为(  )
A.1B.0C.-1D.2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.如图所示,已知三棱柱ABC-A1B1C1中,D是BC的中点,D1是B1C1的中点,设平面A1D1B∩平面ABC=l1,平面ADC1∩平面A1B1C1=l2
(1)求证:l1∥l2
(2)若此三棱柱是各棱长都相等且侧棱垂直于底面,求A1B与AC1所成角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.平面向量$\overrightarrow{a}$与$\overrightarrow{b}$的夹角为60°,$\overrightarrow{a}$=(2,0),|$\overrightarrow{b}$|=1,则|$\overrightarrow{a}$+2$\overrightarrow{b}$|=(  )
A.$\sqrt{3}$B.2$\sqrt{3}$C.4D.2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.直线y=x被圆x2+(y-2)2=4截得的弦长为(  )
A.3B.3$\sqrt{3}$C.2$\sqrt{2}$D.$\sqrt{2}$

查看答案和解析>>

同步练习册答案