精英家教网 > 高中数学 > 题目详情
若在数列{an}中,a1=2,且2an+1+an=0(n∈N*),则an=
 
考点:等比数列的通项公式
专题:等差数列与等比数列
分析:判断数列是等比数列,然后求出通项公式.
解答: 解:在数列{an}中,a1=2,且2an+1+an=0(n∈N*),
所以数列是公比为-
1
2
的等比数列.
所以an=a1(-
1
2
n-1=2•(-
1
2
)n-1

故答案为:2•(-
1
2
)n-1
点评:本题考查等比数列的判断,通项公式的求法,基本知识的考查.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设f(x)=mx2+3(m-4)x-9
(1)是判断函数f(x)零点的个数;
(2)若函数f(x)有两个零点,试确定m的值,是f(x)的两个零点距离最小,并求出这个距离的最小值;
(3)若m=1时,x∈[0,2]上x使f(x)-a≤0恒成立,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

设方程sin4x=0的解集为M,方程cos2x=1的解集为P,则M与P之间的关系是(  )
A、P?MB、M?P
C、M=PD、M∩P=∅

查看答案和解析>>

科目:高中数学 来源: 题型:

函数f(x)的定义域为A,若存在非零实数t,使得对于任意x∈C(C⊆A)有x+t∈A,且f(x+t)≤f(x),则称f(x)为C上的t度低调函数.已知定义域为[0,+∞)的函数f(x)=-|mx-3|,且f(x)为[0,+∞)上的6度低调函数,那么实数m的取值范围是(  )
A、[0,1]
B、[1,+∞)
C、(-∞,0)
D、(-∞,0]∪[1,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:

解不等式:|x|-x>0.

查看答案和解析>>

科目:高中数学 来源: 题型:

在如图所示的几何体中,底面ABCD为菱形,∠BAD=60°,AA1
.
.
DD1
.
.
CC1∥BE,且AA1=AB,D1E⊥平面D1AC,AA1⊥底面ABCD.
(Ⅰ)求二面角D1-AC-E的大小;
(Ⅱ)在D1E上是否存在一点B,使得A1P∥平面EAC,若存在,求
D1P
PE
的值,若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知点F(-1,0),直线l的方程为x=1,过点F的一条直线与以F为焦点、l为准线的抛物线交于A(x1,y2)、B(x2,y2)两点,若x1+x2=-2,求线段AB的长.

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,D为边BC的中点,则下列向量关系式正确的是(  )
A、
AD
-
AC
=
DC
B、
BD
+
DC
=
0
C、
AD
=
AB
+
AC
D、
AD
=
AB
+
1
2
BC

查看答案和解析>>

科目:高中数学 来源: 题型:

在直角坐标系xOy中,曲线C1的参数方程是
x=t-
1
t
y=t+
1
t
,以坐标原点为极点,x轴正半轴为极轴建立极坐标系,曲线C2的极坐标方程是ρsin(θ+
π
6
)=1,则两曲线交点间的距离是
 

查看答案和解析>>

同步练习册答案