(本小题满分12分) 如图,AB是⊙O的直径,PA垂直于⊙O所在的平面,C是圆周上不同于A,B的一点.
(1)证明:平面PAC⊥平面PBC;
(2)若
,∠ABC=30°,求二面角A—PB—C的大小.
(1)平面PAC⊥平面PBC
(2)二面角A—PB—C的大小为60°
【解析】(1)证明:∵PA垂直于⊙O所在的平面,BC在该平面内,所以PA⊥BC。
∵C是圆周上不同于A,B的一点,AB是⊙O的直径,所以∠BCA是直角,即BC⊥AC。
又因为PA与AC是平面PAC内的两条相交直线,所以BC⊥平面PAC。
又困为BC在平面PBC内,所以平面PAC⊥平面PBC …………………5分
(2)作AD⊥PB于D点,AE⊥PC于E点,连DE。
由(1)知平面PAC⊥平面PBC,所以AE⊥平面PBC
而PB在平面PBC内,所以AE⊥PB
即有PB⊥AD(所作)PB⊥AE,又AE与AD是平面ADE内的两条相交直线,
所以PB⊥平面ADE,所以∠ADE是二面角A—PB—C的平面角。…………………………9分
设AB=2r,在Rt△ABC中,∠ABC=30°,所以AC=r
由条件知PA=![]()
在Rt△PAC中,AE=![]()
在Rt△PAB中,AD=![]()
在Rt△AED中,sin∠ADE=
,所以∠ADE=60°
故二面角A—PB—C的大小为60°………………………………………12分
科目:高中数学 来源: 题型:
| ON |
| ON |
| 5 |
| OM |
| OT |
| M1M |
| N1N |
| OP |
| OA |
查看答案和解析>>
科目:高中数学 来源: 题型:
(2009湖南卷文)(本小题满分12分)
为拉动经济增长,某市决定新建一批重点工程,分别为基础设施工程、民生工程和产业建设工程三类,这三类工程所含项目的个数分别占总数的
、
、
.现有3名工人独立地从中任选一个项目参与建设.求:
(I)他们选择的项目所属类别互不相同的概率; w.w.w.k.s.5.u.c.o.m
![]()
(II)至少有1人选择的项目属于民生工程的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
(本小题满分12分)
某民营企业生产A,B两种产品,根据市场调查和预测,A产品的利润与投资成正比,其关系如图1,B产品的利润与投资的算术平方根成正比,其关系如图2,
(注:利润与投资单位是万元)
(1)分别将A,B两种产品的利润表示为投资的函数,并写出它们的函数关系式.(2)该企业已筹集到10万元资金,并全部投入到A,B两种产品的生产,问:怎样分配这10万元投资,才能使企业获得最大利润,其最大利润为多少万元.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com